460 lines
12 KiB
C++
460 lines
12 KiB
C++
#include "StdAfx.h"
|
|
#include "aes.h"
|
|
|
|
|
|
typedef struct {
|
|
DWORD k_len;
|
|
DWORD RK[64];
|
|
} RIJNDAEL_CIPHER_KEY;
|
|
|
|
#define u1byte BYTE
|
|
#define u4byte DWORD
|
|
#define rotl ROTL_DWORD
|
|
#define rotr ROTR_DWORD
|
|
#define byte(x,n) ((u1byte)((x) >> (8 * n)))
|
|
|
|
#define LARGE_TABLES
|
|
|
|
#define ff_mult(a,b) (a && b ? pow_tab[(log_tab[a] + log_tab[b]) % 255] : 0)
|
|
|
|
#ifdef LARGE_TABLES
|
|
#define ls_box(x) \
|
|
( fl_tab[0][byte(x, 0)] ^ \
|
|
fl_tab[1][byte(x, 1)] ^ \
|
|
fl_tab[2][byte(x, 2)] ^ \
|
|
fl_tab[3][byte(x, 3)] )
|
|
#else
|
|
#define ls_box(x) \
|
|
((u4byte)sbx_tab[byte(x, 0)] << 0) ^ \
|
|
((u4byte)sbx_tab[byte(x, 1)] << 8) ^ \
|
|
((u4byte)sbx_tab[byte(x, 2)] << 16) ^ \
|
|
((u4byte)sbx_tab[byte(x, 3)] << 24)
|
|
#endif
|
|
|
|
static u1byte log_tab[256];
|
|
static u1byte pow_tab[256];
|
|
static u1byte sbx_tab[256];
|
|
static u1byte isb_tab[256];
|
|
static u4byte rco_tab[ 10];
|
|
static u4byte ft_tab[4][256];
|
|
static u4byte it_tab[4][256];
|
|
|
|
#ifdef LARGE_TABLES
|
|
static u4byte fl_tab[4][256];
|
|
static u4byte il_tab[4][256];
|
|
#endif
|
|
|
|
static u4byte tab_gen = 0;
|
|
|
|
|
|
static void gen_tabs(void)
|
|
{
|
|
u4byte i, t;
|
|
u1byte p, q;
|
|
|
|
|
|
log_tab[7] = 0;
|
|
for(i = 0,p = 1; i < 256; ++i)
|
|
{
|
|
pow_tab[i] = (BYTE)p;
|
|
log_tab[p] = (BYTE)i;
|
|
|
|
p = (BYTE)(p ^ (p << 1) ^ (p & 0x80 ? 0x01b : 0));
|
|
}
|
|
|
|
log_tab[1] = 0;
|
|
p = 1;
|
|
|
|
for(i = 0; i < 10; ++i)
|
|
{
|
|
rco_tab[i] = p;
|
|
|
|
p = (BYTE)((p << 1) ^ (p & 0x80 ? 0x1b : 0));
|
|
}
|
|
|
|
|
|
for(i = 0; i < 256; ++i)
|
|
{
|
|
p = (BYTE)(i ? pow_tab[255 - log_tab[i]] : 0);
|
|
q = p;
|
|
q = (BYTE)((q >> 7) | (q << 1));
|
|
p ^= q;
|
|
q = (BYTE)((q >> 7) | (q << 1));
|
|
p ^= q;
|
|
q = (BYTE)((q >> 7) | (q << 1));
|
|
p ^= q;
|
|
q = (BYTE)((q >> 7) | (q << 1));
|
|
p ^= q ^ 0x63;
|
|
sbx_tab[i] = (u1byte)p;
|
|
isb_tab[p] = (u1byte)i;
|
|
}
|
|
|
|
for(i = 0; i < 256; ++i)
|
|
{
|
|
p = sbx_tab[i];
|
|
|
|
#ifdef LARGE_TABLES
|
|
t = p;
|
|
fl_tab[0][i] = t;
|
|
fl_tab[1][i] = rotl(t, 8);
|
|
fl_tab[2][i] = rotl(t, 16);
|
|
fl_tab[3][i] = rotl(t, 24);
|
|
#endif
|
|
t = ((u4byte)ff_mult(2, p)) |
|
|
((u4byte)p << 8) |
|
|
((u4byte)p << 16) |
|
|
((u4byte)ff_mult(3, p) << 24);
|
|
|
|
ft_tab[0][i] = t;
|
|
ft_tab[1][i] = rotl(t, 8);
|
|
ft_tab[2][i] = rotl(t, 16);
|
|
ft_tab[3][i] = rotl(t, 24);
|
|
|
|
p = isb_tab[i];
|
|
|
|
#ifdef LARGE_TABLES
|
|
t = p; il_tab[0][i] = t;
|
|
il_tab[1][i] = rotl(t, 8);
|
|
il_tab[2][i] = rotl(t, 16);
|
|
il_tab[3][i] = rotl(t, 24);
|
|
#endif
|
|
t = ((u4byte)ff_mult(14, p)) |
|
|
((u4byte)ff_mult( 9, p) << 8) |
|
|
((u4byte)ff_mult(13, p) << 16) |
|
|
((u4byte)ff_mult(11, p) << 24);
|
|
|
|
it_tab[0][i] = t;
|
|
it_tab[1][i] = rotl(t, 8);
|
|
it_tab[2][i] = rotl(t, 16);
|
|
it_tab[3][i] = rotl(t, 24);
|
|
}
|
|
|
|
tab_gen = 1;
|
|
};
|
|
|
|
#define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
|
|
|
|
#define imix_col(y,x) \
|
|
u = star_x(x); \
|
|
v = star_x(u); \
|
|
w = star_x(v); \
|
|
t = w ^ (x); \
|
|
(y) = u ^ v ^ w; \
|
|
(y) ^= rotr(u ^ t, 8) ^ \
|
|
rotr(v ^ t, 16) ^ \
|
|
rotr(t,24)
|
|
|
|
|
|
static void RIJNDAEL_KeySchedule(
|
|
BYTE *UserKey,
|
|
DWORD k_len,
|
|
DWORD *e_key)
|
|
{
|
|
u4byte i, t;
|
|
|
|
if(!tab_gen)
|
|
gen_tabs();
|
|
|
|
LITTLE_B2D(&(UserKey[ 0]), e_key[0]);
|
|
LITTLE_B2D(&(UserKey[ 4]), e_key[1]);
|
|
LITTLE_B2D(&(UserKey[ 8]), e_key[2]);
|
|
LITTLE_B2D(&(UserKey[12]), e_key[3]);
|
|
|
|
switch(k_len)
|
|
{
|
|
case 4:
|
|
t = e_key[3];
|
|
for(i = 0; i < 10; ++i) {
|
|
t = ls_box(rotr(t, 8)) ^ rco_tab[i];
|
|
t ^= e_key[4 * i]; e_key[4 * i + 4] = t;
|
|
t ^= e_key[4 * i + 1]; e_key[4 * i + 5] = t;
|
|
t ^= e_key[4 * i + 2]; e_key[4 * i + 6] = t;
|
|
t ^= e_key[4 * i + 3]; e_key[4 * i + 7] = t;
|
|
}
|
|
break;
|
|
|
|
case 6:
|
|
LITTLE_B2D(&(UserKey[16]), e_key[4]);
|
|
LITTLE_B2D(&(UserKey[20]), e_key[5]);
|
|
t = e_key[5];
|
|
for(i = 0; i < 8; ++i) {
|
|
t = ls_box(rotr(t, 8)) ^ rco_tab[i];
|
|
t ^= e_key[6 * i]; e_key[6 * i + 6] = t;
|
|
t ^= e_key[6 * i + 1]; e_key[6 * i + 7] = t;
|
|
t ^= e_key[6 * i + 2]; e_key[6 * i + 8] = t;
|
|
t ^= e_key[6 * i + 3]; e_key[6 * i + 9] = t;
|
|
t ^= e_key[6 * i + 4]; e_key[6 * i + 10] = t;
|
|
t ^= e_key[6 * i + 5]; e_key[6 * i + 11] = t;
|
|
}
|
|
break;
|
|
|
|
case 8:
|
|
LITTLE_B2D(&(UserKey[16]), e_key[4]);
|
|
LITTLE_B2D(&(UserKey[20]), e_key[5]);
|
|
LITTLE_B2D(&(UserKey[24]), e_key[6]);
|
|
LITTLE_B2D(&(UserKey[28]), e_key[7]);
|
|
t = e_key[7];
|
|
for(i = 0; i < 7; ++i) {
|
|
t = ls_box(rotr(t, 8)) ^ rco_tab[i];
|
|
t ^= e_key[8 * i]; e_key[8 * i + 8] = t;
|
|
t ^= e_key[8 * i + 1]; e_key[8 * i + 9] = t;
|
|
t ^= e_key[8 * i + 2]; e_key[8 * i + 10] = t;
|
|
t ^= e_key[8 * i + 3]; e_key[8 * i + 11] = t;
|
|
t = e_key[8 * i + 4] ^ ls_box(t);
|
|
e_key[8 * i + 12] = t;
|
|
t ^= e_key[8 * i + 5]; e_key[8 * i + 13] = t;
|
|
t ^= e_key[8 * i + 6]; e_key[8 * i + 14] = t;
|
|
t ^= e_key[8 * i + 7]; e_key[8 * i + 15] = t;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
|
|
RET_VAL AES_EncKeySchedule(
|
|
BYTE *UserKey,
|
|
DWORD UserKeyLen,
|
|
AES_ALG_INFO *AlgInfo)
|
|
{
|
|
RIJNDAEL_CIPHER_KEY *RK_Struct=(RIJNDAEL_CIPHER_KEY *) AlgInfo->RoundKey;
|
|
DWORD *e_key=RK_Struct->RK;
|
|
DWORD k_len;
|
|
|
|
if( (UserKeyLen!=16) && (UserKeyLen!=24) && (UserKeyLen!=32) )
|
|
return CTR_INVALID_USERKEYLEN;
|
|
|
|
k_len = (UserKeyLen + 3) / 4;
|
|
RK_Struct->k_len = k_len;
|
|
|
|
RIJNDAEL_KeySchedule(UserKey, k_len, e_key);
|
|
|
|
return CTR_SUCCESS;
|
|
}
|
|
|
|
|
|
RET_VAL AES_DecKeySchedule(
|
|
BYTE *UserKey,
|
|
DWORD UserKeyLen,
|
|
AES_ALG_INFO *AlgInfo)
|
|
{
|
|
RIJNDAEL_CIPHER_KEY *RK_Struct=(RIJNDAEL_CIPHER_KEY *) AlgInfo->RoundKey;
|
|
DWORD *d_key=RK_Struct->RK;
|
|
DWORD k_len, t_key[64];
|
|
u4byte i, t, u, v, w;
|
|
|
|
if( (UserKeyLen!=16) && (UserKeyLen!=24) && (UserKeyLen!=32) )
|
|
return CTR_INVALID_USERKEYLEN;
|
|
|
|
k_len = (UserKeyLen + 3) / 4;
|
|
RK_Struct->k_len = k_len;
|
|
|
|
RIJNDAEL_KeySchedule(UserKey, k_len, t_key);
|
|
|
|
d_key[0] = t_key[4 * k_len + 24];
|
|
d_key[1] = t_key[4 * k_len + 25];
|
|
d_key[2] = t_key[4 * k_len + 26];
|
|
d_key[3] = t_key[4 * k_len + 27];
|
|
|
|
for( i=4; i<4*(k_len+6); i+=4) {
|
|
imix_col(d_key[i+0], t_key[4*k_len+24-i+0]);
|
|
imix_col(d_key[i+1], t_key[4*k_len+24-i+1]);
|
|
imix_col(d_key[i+2], t_key[4*k_len+24-i+2]);
|
|
imix_col(d_key[i+3], t_key[4*k_len+24-i+3]);
|
|
}
|
|
d_key[i+0] = t_key[4*k_len+24-i+0];
|
|
d_key[i+1] = t_key[4*k_len+24-i+1];
|
|
d_key[i+2] = t_key[4*k_len+24-i+2];
|
|
d_key[i+3] = t_key[4*k_len+24-i+3];
|
|
|
|
return CTR_SUCCESS;
|
|
}
|
|
|
|
|
|
|
|
#define f_nround(bo, bi, k) { \
|
|
bo[0] = ft_tab[0][byte(bi[0],0)] \
|
|
^ ft_tab[1][byte(bi[1],1)] \
|
|
^ ft_tab[2][byte(bi[2],2)] \
|
|
^ ft_tab[3][byte(bi[3],3)] ^ k[0];\
|
|
bo[1] = ft_tab[0][byte(bi[1],0)] \
|
|
^ ft_tab[1][byte(bi[2],1)] \
|
|
^ ft_tab[2][byte(bi[3],2)] \
|
|
^ ft_tab[3][byte(bi[0],3)] ^ k[1];\
|
|
bo[2] = ft_tab[0][byte(bi[2],0)] \
|
|
^ ft_tab[1][byte(bi[3],1)] \
|
|
^ ft_tab[2][byte(bi[0],2)] \
|
|
^ ft_tab[3][byte(bi[1],3)] ^ k[2];\
|
|
bo[3] = ft_tab[0][byte(bi[3],0)] \
|
|
^ ft_tab[1][byte(bi[0],1)] \
|
|
^ ft_tab[2][byte(bi[1],2)] \
|
|
^ ft_tab[3][byte(bi[2],3)] ^ k[3];\
|
|
k += 4; \
|
|
}
|
|
|
|
#define i_nround(bo, bi, k) { \
|
|
bo[0] = it_tab[0][byte(bi[0],0)] \
|
|
^ it_tab[1][byte(bi[3],1)] \
|
|
^ it_tab[2][byte(bi[2],2)] \
|
|
^ it_tab[3][byte(bi[1],3)] ^ k[0];\
|
|
bo[1] = it_tab[0][byte(bi[1],0)] \
|
|
^ it_tab[1][byte(bi[0],1)] \
|
|
^ it_tab[2][byte(bi[3],2)] \
|
|
^ it_tab[3][byte(bi[2],3)] ^ k[1];\
|
|
bo[2] = it_tab[0][byte(bi[2],0)] \
|
|
^ it_tab[1][byte(bi[1],1)] \
|
|
^ it_tab[2][byte(bi[0],2)] \
|
|
^ it_tab[3][byte(bi[3],3)] ^ k[2];\
|
|
bo[3] = it_tab[0][byte(bi[3],0)] \
|
|
^ it_tab[1][byte(bi[2],1)] \
|
|
^ it_tab[2][byte(bi[1],2)] \
|
|
^ it_tab[3][byte(bi[0],3)] ^ k[3];\
|
|
k += 4; \
|
|
}
|
|
|
|
#ifdef LARGE_TABLES
|
|
#define f_lround(bo, bi, k) { \
|
|
bo[0] = fl_tab[0][byte(bi[0],0)] \
|
|
^ fl_tab[1][byte(bi[1],1)] \
|
|
^ fl_tab[2][byte(bi[2],2)] \
|
|
^ fl_tab[3][byte(bi[3],3)] ^ k[0];\
|
|
bo[1] = fl_tab[0][byte(bi[1],0)] \
|
|
^ fl_tab[1][byte(bi[2],1)] \
|
|
^ fl_tab[2][byte(bi[3],2)] \
|
|
^ fl_tab[3][byte(bi[0],3)] ^ k[1];\
|
|
bo[2] = fl_tab[0][byte(bi[2],0)] \
|
|
^ fl_tab[1][byte(bi[3],1)] \
|
|
^ fl_tab[2][byte(bi[0],2)] \
|
|
^ fl_tab[3][byte(bi[1],3)] ^ k[2];\
|
|
bo[3] = fl_tab[0][byte(bi[3],0)] \
|
|
^ fl_tab[1][byte(bi[0],1)] \
|
|
^ fl_tab[2][byte(bi[1],2)] \
|
|
^ fl_tab[3][byte(bi[2],3)] ^ k[3];\
|
|
}
|
|
|
|
#define i_lround(bo, bi, k) { \
|
|
bo[0] = il_tab[0][byte(bi[0],0)] \
|
|
^ il_tab[1][byte(bi[3],1)] \
|
|
^ il_tab[2][byte(bi[2],2)] \
|
|
^ il_tab[3][byte(bi[1],3)] ^ k[0];\
|
|
bo[1] = il_tab[0][byte(bi[1],0)] \
|
|
^ il_tab[1][byte(bi[0],1)] \
|
|
^ il_tab[2][byte(bi[3],2)] \
|
|
^ il_tab[3][byte(bi[2],3)] ^ k[1];\
|
|
bo[2] = il_tab[0][byte(bi[2],0)] \
|
|
^ il_tab[1][byte(bi[1],1)] \
|
|
^ il_tab[2][byte(bi[0],2)] \
|
|
^ il_tab[3][byte(bi[3],3)] ^ k[2];\
|
|
bo[3] = il_tab[0][byte(bi[3],0)] \
|
|
^ il_tab[1][byte(bi[2],1)] \
|
|
^ il_tab[2][byte(bi[1],2)] \
|
|
^ il_tab[3][byte(bi[0],3)] ^ k[3];\
|
|
}
|
|
#else
|
|
#define f_rl(bo, bi, n, k) \
|
|
bo[n] = (u4byte)sbx_tab[byte(bi[n],0)] ^ \
|
|
rotl(((u4byte)sbx_tab[byte(bi[(n + 1) & 3],1)]), 8) ^ \
|
|
rotl(((u4byte)sbx_tab[byte(bi[(n + 2) & 3],2)]), 16) ^ \
|
|
rotl(((u4byte)sbx_tab[byte(bi[(n + 3) & 3],3)]), 24) ^ *(k + n)
|
|
|
|
#define i_rl(bo, bi, n, k) \
|
|
bo[n] = (u4byte)isb_tab[byte(bi[n],0)] ^ \
|
|
rotl(((u4byte)isb_tab[byte(bi[(n + 3) & 3],1)]), 8) ^ \
|
|
rotl(((u4byte)isb_tab[byte(bi[(n + 2) & 3],2)]), 16) ^ \
|
|
rotl(((u4byte)isb_tab[byte(bi[(n + 1) & 3],3)]), 24) ^ *(k + n)
|
|
|
|
#define f_lround(bo, bi, k) \
|
|
f_rl(bo, bi, 0, k); \
|
|
f_rl(bo, bi, 1, k); \
|
|
f_rl(bo, bi, 2, k); \
|
|
f_rl(bo, bi, 3, k)
|
|
|
|
#define i_lround(bo, bi, k) \
|
|
i_rl(bo, bi, 0, k); \
|
|
i_rl(bo, bi, 1, k); \
|
|
i_rl(bo, bi, 2, k); \
|
|
i_rl(bo, bi, 3, k)
|
|
#endif
|
|
|
|
|
|
void AES_Encrypt(
|
|
void *CipherKey,
|
|
BYTE *Data)
|
|
{
|
|
RIJNDAEL_CIPHER_KEY *RK_Struct= (RIJNDAEL_CIPHER_KEY*)CipherKey;
|
|
DWORD *e_key=RK_Struct->RK;
|
|
DWORD k_len=RK_Struct->k_len;
|
|
u4byte b0[4], b1[4], *kp;
|
|
|
|
LITTLE_B2D(&(Data[ 0]), b0[0]);
|
|
LITTLE_B2D(&(Data[ 4]), b0[1]);
|
|
LITTLE_B2D(&(Data[ 8]), b0[2]);
|
|
LITTLE_B2D(&(Data[12]), b0[3]);
|
|
|
|
b0[0] ^= e_key[0];
|
|
b0[1] ^= e_key[1];
|
|
b0[2] ^= e_key[2];
|
|
b0[3] ^= e_key[3];
|
|
|
|
kp = e_key + 4;
|
|
|
|
switch( k_len ) {
|
|
case 8 :
|
|
f_nround(b1, b0, kp); f_nround(b0, b1, kp);
|
|
case 6 :
|
|
f_nround(b1, b0, kp); f_nround(b0, b1, kp);
|
|
case 4 :
|
|
f_nround(b1, b0, kp); f_nround(b0, b1, kp);
|
|
f_nround(b1, b0, kp); f_nround(b0, b1, kp);
|
|
f_nround(b1, b0, kp); f_nround(b0, b1, kp);
|
|
f_nround(b1, b0, kp); f_nround(b0, b1, kp);
|
|
f_nround(b1, b0, kp); f_lround(b0, b1, kp);
|
|
}
|
|
|
|
LITTLE_D2B(b0[0], &(Data[ 0]));
|
|
LITTLE_D2B(b0[1], &(Data[ 4]));
|
|
LITTLE_D2B(b0[2], &(Data[ 8]));
|
|
LITTLE_D2B(b0[3], &(Data[12]));
|
|
}
|
|
|
|
|
|
void AES_Decrypt(
|
|
void *CipherKey,
|
|
BYTE *Data)
|
|
{
|
|
RIJNDAEL_CIPHER_KEY *RK_Struct= (RIJNDAEL_CIPHER_KEY*)CipherKey;
|
|
DWORD *d_key=RK_Struct->RK;
|
|
DWORD k_len=RK_Struct->k_len;
|
|
u4byte b0[4], b1[4], *kp;
|
|
|
|
LITTLE_B2D(&(Data[ 0]), b0[0]);
|
|
LITTLE_B2D(&(Data[ 4]), b0[1]);
|
|
LITTLE_B2D(&(Data[ 8]), b0[2]);
|
|
LITTLE_B2D(&(Data[12]), b0[3]);
|
|
|
|
b0[0] ^= d_key[0];
|
|
b0[1] ^= d_key[1];
|
|
b0[2] ^= d_key[2];
|
|
b0[3] ^= d_key[3];
|
|
|
|
kp = d_key + 4;
|
|
|
|
switch( k_len ) {
|
|
case 8 :
|
|
i_nround(b1, b0, kp); i_nround(b0, b1, kp);
|
|
case 6 :
|
|
i_nround(b1, b0, kp); i_nround(b0, b1, kp);
|
|
case 4 :
|
|
i_nround(b1, b0, kp); i_nround(b0, b1, kp);
|
|
i_nround(b1, b0, kp); i_nround(b0, b1, kp);
|
|
i_nround(b1, b0, kp); i_nround(b0, b1, kp);
|
|
i_nround(b1, b0, kp); i_nround(b0, b1, kp);
|
|
i_nround(b1, b0, kp); i_lround(b0, b1, kp);
|
|
}
|
|
|
|
LITTLE_D2B(b0[0], &(Data[ 0]));
|
|
LITTLE_D2B(b0[1], &(Data[ 4]));
|
|
LITTLE_D2B(b0[2], &(Data[ 8]));
|
|
LITTLE_D2B(b0[3], &(Data[12]));
|
|
}
|
|
|