from gmssl import * #pylint: disable = e0401 from typing import Tuple, Callable # 生成密钥对模块 class CurveFp: def __init__(self, A, B, P, N, Gx, Gy, name): self.A = A self.B = B self.P = P self.N = N self.Gx = Gx self.Gy = Gy self.name = name sm2p256v1 = CurveFp( name="sm2p256v1", A=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC, B=0x28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93, P=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF, N=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123, Gx=0x32C4AE2C1F1981195F9904466A39C9948FE30BBFF2660BE1715A4589334C74C7, Gy=0xBC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0 ) def multiply(a: Tuple[int, int], n: int) -> Tuple[int, int]: N = sm2p256v1.N A = sm2p256v1.A P = sm2p256v1.P return fromJacobian(jacobianMultiply(toJacobian(a), n, N, A, P), P) def add(a: Tuple[int, int], b: Tuple[int, int], A: int, P: int) -> Tuple[int, int]: A = sm2p256v1.A P = sm2p256v1.P return fromJacobian(jacobianAdd(toJacobian(a), toJacobian(b), A, P), P) def inv(a: int, n: int) -> int: if a == 0: return 0 lm, hm = 1, 0 low, high = a % n, n while low > 1: r = high // low nm, new = hm - lm * r, high - low * r lm, low, hm, high = nm, new, lm, low return lm % n def toJacobian(Xp_Yp: Tuple[int, int]) -> Tuple[int, int, int]: Xp, Yp = Xp_Yp return (Xp, Yp, 1) def fromJacobian(Xp_Yp_Zp: Tuple[int, int, int], P: int) -> Tuple[int, int]: Xp, Yp, Zp = Xp_Yp_Zp z = inv(Zp, P) return ((Xp * z ** 2) % P, (Yp * z ** 3) % P) def jacobianDouble(Xp_Yp_Zp: Tuple[int, int, int], A: int, P: int) -> Tuple[int, int, int]: Xp, Yp, Zp = Xp_Yp_Zp if not Yp: return (0, 0, 0) ysq = (Yp ** 2) % P S = (4 * Xp * ysq) % P M = (3 * Xp ** 2 + A * Zp ** 4) % P nx = (M ** 2 - 2 * S) % P ny = (M * (S - nx) - 8 * ysq ** 2) % P nz = (2 * Yp * Zp) % P return (nx, ny, nz) def jacobianAdd( Xp_Yp_Zp: Tuple[int, int, int], Xq_Yq_Zq: Tuple[int, int, int], A: int, P: int ) -> Tuple[int, int, int]: Xp, Yp, Zp = Xp_Yp_Zp Xq, Yq, Zq = Xq_Yq_Zq if not Yp: return (Xq, Yq, Zq) if not Yq: return (Xp, Yp, Zp) U1 = (Xp * Zq ** 2) % P U2 = (Xq * Zp ** 2) % P S1 = (Yp * Zq ** 3) % P S2 = (Yq * Zp ** 3) % P if U1 == U2: if S1 != S2: return (0, 0, 1) return jacobianDouble((Xp, Yp, Zp), A, P) H = U2 - U1 R = S2 - S1 H2 = (H * H) % P H3 = (H * H2) % P U1H2 = (U1 * H2) % P nx = (R ** 2 - H3 - 2 * U1H2) % P ny = (R * (U1H2 - nx) - S1 * H3) % P nz = (H * Zp * Zq) % P return (nx, ny, nz) def jacobianMultiply( Xp_Yp_Zp: Tuple[int, int, int], n: int, N: int, A: int, P: int ) -> Tuple[int, int, int]: Xp, Yp, Zp = Xp_Yp_Zp if Yp == 0 or n == 0: return (0, 0, 1) if n == 1: return (Xp, Yp, Zp) if n < 0 or n >= N: return jacobianMultiply((Xp, Yp, Zp), n % N, N, A, P) if (n % 2) == 0: return jacobianDouble(jacobianMultiply((Xp, Yp, Zp), n // 2, N, A, P), A, P) if (n % 2) == 1: return jacobianAdd(jacobianDouble(jacobianMultiply((Xp, Yp, Zp), n // 2, N, A, P), A, P), (Xp, Yp, Zp), A, P) raise ValueError("jacobian Multiply error") def Setup(sec: int) -> Tuple[int, int, int, Callable, Callable, Callable, Callable]: ''' params: sec: an init safety param return: G: ''' return G, g, U, hash2, hash3, hash4, KDF def GenerateKeyPair( lamda_parma: int, public_params: tuple ) -> Tuple[Tuple[bytes, bytes], bytes]: ''' params: lamda_param: an init safety param public_params: curve params return: public_key, secret_key ''' sm2 = Sm2Key() sm2.generate_key() public_key_x = bytes(sm2.public_key.x) public_key_y = bytes(sm2.public_key.y) public_key = (public_key_x, public_key_y) secret_key = bytes(sm2.private_key) print(private_key) return public_key, secret_key def Enc(pk, m): pass