from gmssl import * #pylint: disable = e0401 from typing import Tuple, Callable import random # 生成密钥对模块 class CurveFp: def __init__(self, A, B, P, N, Gx, Gy, name): self.A = A self.B = B self.P = P self.N = N self.Gx = Gx self.Gy = Gy self.name = name sm2p256v1 = CurveFp( name="sm2p256v1", A=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC, B=0x28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93, P=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF, N=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123, Gx=0x32C4AE2C1F1981195F9904466A39C9948FE30BBFF2660BE1715A4589334C74C7, Gy=0xBC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0 ) def multiply(a: Tuple[int, int], n: int) -> Tuple[int, int]: N = sm2p256v1.N A = sm2p256v1.A P = sm2p256v1.P return fromJacobian(jacobianMultiply(toJacobian(a), n, N, A, P), P) def add(a: Tuple[int, int], b: Tuple[int, int]) -> Tuple[int, int]: A = sm2p256v1.A P = sm2p256v1.P return fromJacobian(jacobianAdd(toJacobian(a), toJacobian(b), A, P), P) def inv(a: int, n: int) -> int: if a == 0: return 0 lm, hm = 1, 0 low, high = a % n, n while low > 1: r = high // low nm, new = hm - lm * r, high - low * r lm, low, hm, high = nm, new, lm, low return lm % n def toJacobian(Xp_Yp: Tuple[int, int]) -> Tuple[int, int, int]: Xp, Yp = Xp_Yp return (Xp, Yp, 1) def fromJacobian(Xp_Yp_Zp: Tuple[int, int, int], P: int) -> Tuple[int, int]: Xp, Yp, Zp = Xp_Yp_Zp z = inv(Zp, P) return ((Xp * z ** 2) % P, (Yp * z ** 3) % P) def jacobianDouble(Xp_Yp_Zp: Tuple[int, int, int], A: int, P: int) -> Tuple[int, int, int]: Xp, Yp, Zp = Xp_Yp_Zp if not Yp: return (0, 0, 0) ysq = (Yp ** 2) % P S = (4 * Xp * ysq) % P M = (3 * Xp ** 2 + A * Zp ** 4) % P nx = (M ** 2 - 2 * S) % P ny = (M * (S - nx) - 8 * ysq ** 2) % P nz = (2 * Yp * Zp) % P return (nx, ny, nz) def jacobianAdd( Xp_Yp_Zp: Tuple[int, int, int], Xq_Yq_Zq: Tuple[int, int, int], A: int, P: int ) -> Tuple[int, int, int]: Xp, Yp, Zp = Xp_Yp_Zp Xq, Yq, Zq = Xq_Yq_Zq if not Yp: return (Xq, Yq, Zq) if not Yq: return (Xp, Yp, Zp) U1 = (Xp * Zq ** 2) % P U2 = (Xq * Zp ** 2) % P S1 = (Yp * Zq ** 3) % P S2 = (Yq * Zp ** 3) % P if U1 == U2: if S1 != S2: return (0, 0, 1) return jacobianDouble((Xp, Yp, Zp), A, P) H = U2 - U1 R = S2 - S1 H2 = (H * H) % P H3 = (H * H2) % P U1H2 = (U1 * H2) % P nx = (R ** 2 - H3 - 2 * U1H2) % P ny = (R * (U1H2 - nx) - S1 * H3) % P nz = (H * Zp * Zq) % P return (nx, ny, nz) def jacobianMultiply( Xp_Yp_Zp: Tuple[int, int, int], n: int, N: int, A: int, P: int ) -> Tuple[int, int, int]: Xp, Yp, Zp = Xp_Yp_Zp if Yp == 0 or n == 0: return (0, 0, 1) if n == 1: return (Xp, Yp, Zp) if n < 0 or n >= N: return jacobianMultiply((Xp, Yp, Zp), n % N, N, A, P) if (n % 2) == 0: return jacobianDouble(jacobianMultiply((Xp, Yp, Zp), n // 2, N, A, P), A, P) if (n % 2) == 1: return jacobianAdd(jacobianDouble(jacobianMultiply((Xp, Yp, Zp), n // 2, N, A, P), A, P), (Xp, Yp, Zp), A, P) raise ValueError("jacobian Multiply error") def Setup(sec: int) -> Tuple[CurveFp, Tuple[int, int], Tuple[int, int], Callable, Callable, Callable, Callable]: ''' params: sec: an init safety param return: <<<<<<< HEAD G: sm2 curve g: generator U: another generator use sm3 as hash function hash2: G^2 -> Zq hash3: G^3 -> Zq hash4: G^3 * Zq -> Zq ''' G = sm2p256v1 g = (sm2p256v1.Gx, sm2p256v1.Gy) tmp_u = random.randint(0, sm2p256v1.P) U = multiply(g, tmp_u) def hash2(double_G: Tuple[Tuple[int, int], Tuple[int, int]]) -> int: sm3 = Sm3() #pylint: disable=e0602 for i in double_G: for j in i: sm3.update(j.to_bytes(32)) digest = sm3.digest() digest = int.from_bytes(digest,'big') % sm2p256v1.P return digest def hash3(triple_G: Tuple[Tuple[int, int], Tuple[int, int], Tuple[int, int]]) -> int: sm3 = Sm3() #pylint: disable=e0602 for i in triple_G: for j in i: sm3.update(j.to_bytes(32)) digest = sm3.digest() digest = int.from_bytes(digest,'big') % sm2p256v1.P return digest def hash4(triple_G: Tuple[Tuple[int, int], Tuple[int, int], Tuple[int, int]], Zp: int) -> int: sm3 = Sm3() #pylint: disable=e0602 for i in triple_G: for j in i: sm3.update(j.to_bytes(32)) sm3.update(Zp.to_bytes(32)) digest = sm3.digest() digest = int.from_bytes(digest,'big') % sm2p256v1.P return digest # KDF = Sm3() #pylint: disable=e0602 def KDF(double_G: Tuple[int, int], num: int) -> int: sm3 = Sm3() for i in double_G: sm3.update(i.to_bytes(32)) sm3.update(num.to_bytes(32)) digest = sm3.digest() digest = int.from_bytes(digest,'big') % sm2p256v1.P return digest return G, g, U, hash2, hash3, hash4, KDF def GenerateKeyPair( lamda_parma: int, public_params: tuple ) -> Tuple[Tuple[int, int], int]: ''' params: lamda_param: an init safety param public_params: curve params return: public_key, secret_key ''' sm2 = Sm2Key() #pylint: disable=e0602 sm2.generate_key() public_key_x = int.from_bytes(bytes(sm2.public_key.x),"big") public_key_y = int.from_bytes(bytes(sm2.public_key.y),"big") public_key = (public_key_x, public_key_y) secret_key = int.from_bytes(bytes(sm2.private_key),"big") return public_key, secret_key def Enc(pk: Tuple[int, int], m: int) -> Tuple[Tuple[ Tuple[int, int],Tuple[int, int], int], int]: enca = Encapsulate(pk) K = enca[0] capsule = enca[1] sm4_enc = Sm4Cbc(key, iv, DO_ENCRYPT) #pylint: disable=e0602 plain_Data = m.to_bytes(32) enc_Data = sm4_enc.update(plain_Data) enc_Data += sm4_enc.finish() enc_message = (capsule, enc_Data) return enc_message # GenerateRekey def H5(id: int, D: int) -> int: sm3 = Sm3() sm3.update(id.to_bytes(32)) sm3.update(D.to_bytes(32)) hash = sm3.digest() hash = int.from_bytes(hash,'big') % G.P return hash def H6(triple_G: Tuple[Tuple[int, int], Tuple[int, int], Tuple[int, int]]) -> int: sm3 = Sm3() #pylint: disable=e0602 for i in triple_G: for j in i: sm3.update(j.to_bytes(32)) hash = sm3.digest() hash = int.from_bytes(hash,'big') % G.P return hash def f(x: int, f_modulus: list, T: int) -> int: res = 0 for i in range(T): res += f_modulus[i] * pow(x, i) return res # 生成A和B的公钥和私钥 pk_A, sk_A = GenerateKeyPair(0, ()) pk_B, sk_B = GenerateKeyPair(0, ()) # sec需要重新设置 sec = 256 # 调用Setup函数 G, g, U, hash2, hash3, hash4, KDF = Setup(sec) def GenerateReKey(sk_A, pk_B, N: int, T: int) -> list: ''' param: skA, pkB, N(节点总数), T(阈值) return rki(0 <= i <= N-1) ''' # 计算临时密钥对(x_A, X_A) x_A = random.randint(0, G.P - 1) X_A = multiply(g, x_A) # d是Bob的密钥对与临时密钥对的非交互式Diffie-Hellman密钥交换的结果 d = hash3((X_A, pk_B, multiply(pk_B, x_A))) # 计算多项式系数, 确定代理节点的ID(一个点) f_modulus = [] # 计算f0 f0 = (sk_A * inv(d, G.P)) % G.P f_modulus.append(f0) # 计算fi(1 <= i <= T - 1) for i in range(1, T): f_modulus.append(random.randint(0, G.P - 1)) # 计算D D = H6((X_A, pk_B, multiply(pk_B, sk_A))) # 计算KF KF = [] for i in range(N): y = random.randint(0, G.P - 1) Y = multiply(g, y) s_x = H5(i, D) # id需要设置 r_k = f(s_x, f_modulus, T) U1 = multiply(U, r_k) kFrag = (i, r_k, X_A, U1) KF.append(kFrag) return KF def Encapsulate(pk_A: Tuple[int, int]) -> Tuple[int, Tuple[Tuple[int, int], Tuple[int, int], int]]: r = random.randint(0, G.P - 1) u = random.randint(0, G.P - 1) E = multiply(g, r) V = multiply(g, u) s = u + r * hash2((E, V)) K = KDF(pk_A, r + u) capsule = (E, V, s) return (K, capsule)