预期解
This commit is contained in:
parent
e184d98710
commit
5a82a0326e
195
crypto/Claude_Shannon/crack.sage
Normal file
195
crypto/Claude_Shannon/crack.sage
Normal file
@ -0,0 +1,195 @@
|
||||
"""
|
||||
前置知识(建议要看,非常自信可以不看)
|
||||
https://zhuanlan.zhihu.com/p/448198789
|
||||
|
||||
信息论的一些基础
|
||||
可以结合这份ppt来看
|
||||
https://web.xidian.edu.cn/jwliu/files/20190521_003040.pdf
|
||||
|
||||
同时b站上的国防科技大学-信息论与编码基础也可以学习一下
|
||||
https://www.bilibili.com/video/BV1pJ411U7G8?p=61
|
||||
|
||||
|
||||
读题可知,我们需要获取一个7bit的有效信息,每次返回的信息可以看作1bit,共15bit。
|
||||
而其中1-2次的说谎我们可以视为1-2bit的传输错误。
|
||||
因此我们需要一种最少可以纠正2bit的编码,也就是循环冗余校验
|
||||
|
||||
根据题目描述,我们需要构造一个(15,7)循环码,也就是15bit的编码数,7bit的有效信息数
|
||||
"""
|
||||
# 首先定义伽罗瓦域
|
||||
R.<x> = PolynomialRing(GF(2))
|
||||
|
||||
"""
|
||||
然后寻找生成元g
|
||||
根据定理,(n,k)循环码的生成元g一定是x^n+1的n-k次因子
|
||||
(ppt中说是x^n-1,这里因为是GF(2),所以+1和-1是等价的)
|
||||
带入计算得知,g应当为x^15+1的8次因子
|
||||
"""
|
||||
ff = x^15+1
|
||||
g = factor(ff)
|
||||
# (x + 1) * (x^2 + x + 1) * (x^4 + x + 1) * (x^4 + x^3 + 1) * (x^4 + x^3 + x^2 + x + 1)
|
||||
factors = []
|
||||
for i in range(len(g)):
|
||||
factors.append(g[i][0])
|
||||
|
||||
possible_g = []
|
||||
|
||||
# x + 2 * y + 4 * z == 8
|
||||
# root = [(8,0,0),(6,1,0),(4,2,0),(4,0,1),(2,3,0),(2,1,1),(0,4,0),(0,2,1),(0,0,2)]
|
||||
|
||||
|
||||
possible_g.append(factors[0]^8)
|
||||
|
||||
possible_g.append(factors[0]^6 * factors[1])
|
||||
|
||||
possible_g.append(factors[0]^4 * factors[1]^2)
|
||||
|
||||
possible_g.append(factors[0]^4 * factors[2])
|
||||
possible_g.append(factors[0]^4 * factors[3])
|
||||
possible_g.append(factors[0]^4 * factors[4])
|
||||
|
||||
possible_g.append(factors[0]^2 * factors[1]^3)
|
||||
|
||||
possible_g.append(factors[0]^2 * factors[1] * factors[2])
|
||||
possible_g.append(factors[0]^2 * factors[1] * factors[3])
|
||||
possible_g.append(factors[0]^2 * factors[1] * factors[4])
|
||||
|
||||
possible_g.append(factors[1]^4)
|
||||
|
||||
possible_g.append(factors[1]^2 * factors[2])
|
||||
possible_g.append(factors[1]^2 * factors[3])
|
||||
possible_g.append(factors[1]^2 * factors[4])
|
||||
|
||||
possible_g.append(factors[2] * factors[2])
|
||||
possible_g.append(factors[2] * factors[3])
|
||||
possible_g.append(factors[2] * factors[4])
|
||||
possible_g.append(factors[3] * factors[3])
|
||||
possible_g.append(factors[3] * factors[4])
|
||||
possible_g.append(factors[4] * factors[4])
|
||||
|
||||
"""
|
||||
至此我们已经找出所有的生成元了,但是不要忘了还有纠错的要求。
|
||||
纠正2bit的要求则是: 假设用d表示码组的最小汉明距离,纠正错误时,设可纠正t位的错误,则d >= 2t+1
|
||||
(也就是保证任一点A的错误状态不落到其余点B,并且A的错误状态离A更近)
|
||||
带入公式则是d >= 5
|
||||
"""
|
||||
|
||||
# 定义函数 n2p,将二进制数转换为多项式的形式
|
||||
def n2p(a):
|
||||
a = bin(a)[2:]
|
||||
p = 0
|
||||
for i in range(len(a)):
|
||||
if a[len(a) - i - 1] == '1':
|
||||
p += x^i
|
||||
return p
|
||||
|
||||
# 定义函数enc,将7bit的信息编码成循环码
|
||||
def enc(i):
|
||||
m = n2p(i)
|
||||
c = (x^8) * m + (((x^8) * m) % g)
|
||||
return "".join([str(int(i in c.exponents())) for i in range(15)])[::-1]
|
||||
|
||||
# 定义函数dif,计算ab之间的汉明距离
|
||||
def dif(a, b):
|
||||
cnt = 0
|
||||
for i in range(len(a)):
|
||||
if a[i] != b[i]:
|
||||
cnt += 1
|
||||
return cnt
|
||||
|
||||
"""
|
||||
通过构造校验表来检查所有的生成元是否满足条件
|
||||
"""
|
||||
for g in possible_g:
|
||||
# 创建一个列表 dic,存储不同输入值的编码
|
||||
dic = []
|
||||
|
||||
for i in range(2**7):
|
||||
dic.append(enc(i))
|
||||
|
||||
minHD = 15
|
||||
for i in dic:
|
||||
for j in dic:
|
||||
if i == j:
|
||||
continue
|
||||
if dif(i,j) <= minHD:
|
||||
minHD = dif(i,j)
|
||||
|
||||
#if minHD >= 5:
|
||||
#print(g)
|
||||
# x^8 + x^7 + x^6 + x^4 + 1
|
||||
# x^8 + x^4 + x^2 + x + 1
|
||||
|
||||
|
||||
# 下面两个随便挑一个作为生成元就好了
|
||||
# g = x^8 + x^7 + x^6 + x^4 + 1
|
||||
g = x^8 + x^4 + x^2 + x + 1
|
||||
dic = []
|
||||
|
||||
for i in range(2^7):
|
||||
dic.append(enc(i))
|
||||
|
||||
"""
|
||||
构造问题这个地方有点巧妙。
|
||||
我们可以发现系统码是一个对称互补的码,也就是说0和127,1和126的系统码每一位都相反。
|
||||
|
||||
那么对于所有系统码来说0和1就是平均分布的。(因为成对来看,30个bit中必有15bit的0和15bit的1)
|
||||
对于系统码的任意一位为0的概率就是0.5,为1的概率也是0.5
|
||||
|
||||
因此我们可以把questions[i]和j[i]等价来看,
|
||||
我们可以找出所有令j[i]==1的信息码情况,共64种,把这些进行or运算。
|
||||
把这个问题发送出去,如果返回true,那么证明j[i]就是1。
|
||||
以此类推,我们就可以得到一串15bit的返回值。
|
||||
|
||||
但是因为存在最多2bit的错误,我们需要跟码表进行对比,找出汉明距离小于等于2的系统码。
|
||||
然后这个系统码对应的信息码就是正确的信息码
|
||||
"""
|
||||
|
||||
# 定义字符串模板 part,用于后面构造问题
|
||||
part = "( C0 == {} and C1 == {} and C2 == {} and C3 == {} and C4 == {} and C5 == {} and C6 == {} ) "
|
||||
|
||||
# 创建问题列表 questions,用于存储构造的问题模板
|
||||
questions = []
|
||||
for i in range(15):
|
||||
question = ""
|
||||
nums = [j[:7] for j in dic if j[i] == '1']
|
||||
for j in range(64):
|
||||
n = nums[j]
|
||||
question += part.format(n[0], n[1], n[2], n[3], n[4], n[5], n[6]) + "or "
|
||||
questions.append(question[:-4])
|
||||
|
||||
|
||||
|
||||
# 导入 pwn 模块,用于与远程或本地进程进行交互
|
||||
from pwn import *
|
||||
|
||||
# 设置日志级别为 debug,以便在执行过程中输出详细日志信息
|
||||
#context.log_level = 'debug'
|
||||
|
||||
r = process(['python3', 'main_local.py'])
|
||||
#r = remote("localhost", "10011")
|
||||
|
||||
for i in range(1):
|
||||
msg = ''
|
||||
# 逐个发送问题并接收答案
|
||||
for j in range(15):
|
||||
r.sendlineafter(b"Shannon:", questions[j].encode())
|
||||
r.recvuntil(b"answers:")
|
||||
if b'True' in r.recvuntil(b"!"):
|
||||
msg += '1'
|
||||
else:
|
||||
msg += '0'
|
||||
# 查找与收到的答案最接近的编码,这里答案肯定只会有一个
|
||||
for j in range(128):
|
||||
if (dif(msg, dic[j]) <= 2):
|
||||
break
|
||||
ans = ""
|
||||
for k in dic[j][:7]:
|
||||
ans += k + " "
|
||||
# 发送解码后的答案
|
||||
r.sendlineafter(b"chests:", ans.encode())
|
||||
|
||||
flag = r.recvall()
|
||||
print(flag)
|
||||
r.close()
|
||||
|
Loading…
x
Reference in New Issue
Block a user