use std::collections::HashSet; use anyhow::{Result, anyhow}; use rand::prelude::*; const SBOX: [u8; 256] = [ 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16, ]; const INV_SBOX: [u8; 256] = [ 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d, ]; const RCON: [[u8; 4]; 10] = [ [0x01, 0x00, 0x00, 0x00], [0x02, 0x00, 0x00, 0x00], [0x04, 0x00, 0x00, 0x00], [0x08, 0x00, 0x00, 0x00], [0x10, 0x00, 0x00, 0x00], [0x20, 0x00, 0x00, 0x00], [0x40, 0x00, 0x00, 0x00], [0x80, 0x00, 0x00, 0x00], [0x1b, 0x00, 0x00, 0x00], [0x36, 0x00, 0x00, 0x00], ]; pub fn add_round_key(block: &[u8; 16], round_key: &[u8; 16]) -> [u8; 16] { std::array::from_fn(|i| block[i] ^ round_key[i]) } pub fn sub_bytes(block: &[u8; 16]) -> [u8; 16] { std::array::from_fn(|i| SBOX[block[i] as usize]) } pub fn inv_sub_bytes(block: &[u8; 16]) -> [u8; 16] { std::array::from_fn(|i| INV_SBOX[block[i] as usize]) } pub fn shift_rows(block: &[u8; 16]) -> [u8; 16] { let mut result = [0u8; 16]; // Row 0 (no shift) result[0] = block[0]; result[4] = block[4]; result[8] = block[8]; result[12] = block[12]; // Row 1 (shift left by 1) result[1] = block[5]; result[5] = block[9]; result[9] = block[13]; result[13] = block[1]; // Row 2 (shift left by 2) result[2] = block[10]; result[6] = block[14]; result[10] = block[2]; result[14] = block[6]; // Row 3 (shift left by 3) result[3] = block[15]; result[7] = block[3]; result[11] = block[7]; result[15] = block[11]; result } pub fn inv_shift_rows(block: &[u8; 16]) -> [u8; 16] { let mut result = [0u8; 16]; // Row 0 (no shift) result[0] = block[0]; result[4] = block[4]; result[8] = block[8]; result[12] = block[12]; // Row 1 (shift right by 1, equivalent to shift left by 3) result[1] = block[13]; result[5] = block[1]; result[9] = block[5]; result[13] = block[9]; // Row 2 (shift right by 2, equivalent to shift left by 2) result[2] = block[10]; result[6] = block[14]; result[10] = block[2]; result[14] = block[6]; // Row 3 (shift right by 3, equivalent to shift left by 1) result[3] = block[7]; result[7] = block[11]; result[11] = block[15]; result[15] = block[3]; result } fn gf_mul_01(a: u8) -> u8 { a } fn gf_mul_02(a: u8) -> u8 { if a & 0x80 != 0 { (a << 1) ^ 0x1b } else { a << 1 } } fn gf_mul_03(a: u8) -> u8 { gf_mul_02(a) ^ a } fn gf_mul_0e(a: u8) -> u8 { gf_mul_02(gf_mul_02(gf_mul_02(a))) ^ gf_mul_04(a) ^ gf_mul_02(a) } fn gf_mul_0b(a: u8) -> u8 { gf_mul_08(a) ^ gf_mul_02(a) ^ a } fn gf_mul_0d(a: u8) -> u8 { gf_mul_08(a) ^ gf_mul_04(a) ^ a } fn gf_mul_09(a: u8) -> u8 { gf_mul_08(a) ^ a } fn gf_mul_04(a: u8) -> u8 { gf_mul_02(gf_mul_02(a)) } fn gf_mul_08(a: u8) -> u8 { gf_mul_02(gf_mul_04(a)) } pub fn mix_columns(block: &[u8; 16]) -> [u8; 16] { // [02 03 01 01] // [01 02 03 01] // [01 01 02 03] // [03 01 01 02] let mut result = [0u8; 16]; for i in 0..4 { let col = [ block[i * 4], block[i * 4 + 1], block[i * 4 + 2], block[i * 4 + 3], ]; result[i * 4] = gf_mul_02(col[0]) ^ gf_mul_03(col[1]) ^ gf_mul_01(col[2]) ^ gf_mul_01(col[3]); result[i * 4 + 1] = gf_mul_01(col[0]) ^ gf_mul_02(col[1]) ^ gf_mul_03(col[2]) ^ gf_mul_01(col[3]); result[i * 4 + 2] = gf_mul_01(col[0]) ^ gf_mul_01(col[1]) ^ gf_mul_02(col[2]) ^ gf_mul_03(col[3]); result[i * 4 + 3] = gf_mul_03(col[0]) ^ gf_mul_01(col[1]) ^ gf_mul_01(col[2]) ^ gf_mul_02(col[3]); } result } pub fn inv_mix_columns(block: &[u8; 16]) -> [u8; 16] { // [0E 0B 0D 09] // [09 0E 0B 0D] // [0D 09 0E 0B] // [0B 0D 09 0E] let mut result = [0u8; 16]; for i in 0..4 { let col = [ block[i * 4], block[i * 4 + 1], block[i * 4 + 2], block[i * 4 + 3], ]; result[i * 4] = gf_mul_0e(col[0]) ^ gf_mul_0b(col[1]) ^ gf_mul_0d(col[2]) ^ gf_mul_09(col[3]); result[i * 4 + 1] = gf_mul_09(col[0]) ^ gf_mul_0e(col[1]) ^ gf_mul_0b(col[2]) ^ gf_mul_0d(col[3]); result[i * 4 + 2] = gf_mul_0d(col[0]) ^ gf_mul_09(col[1]) ^ gf_mul_0e(col[2]) ^ gf_mul_0b(col[3]); result[i * 4 + 3] = gf_mul_0b(col[0]) ^ gf_mul_0d(col[1]) ^ gf_mul_09(col[2]) ^ gf_mul_0e(col[3]); } result } pub fn expand_key(key: &[u8; 16]) -> [[u8; 16]; 11] { let mut round_key: [[u8; 16]; 11] = [[0u8; 16]; 11]; round_key[0] = *key; for round in 1..round_key.len() { let prev_key = round_key[round - 1]; let mut new_key = [0u8; 16]; // 对前一轮密钥的最后4字节进行g变换 let g_result = g_func(prev_key[12..16].try_into().unwrap(), round - 1); // 新密钥的每4字节都要与前面的4字节异或 for i in 0..4 { new_key[i] = prev_key[i] ^ g_result[i]; } for i in 4..8 { new_key[i] = prev_key[i] ^ new_key[i - 4]; } for i in 8..12 { new_key[i] = prev_key[i] ^ new_key[i - 4]; } for i in 12..16 { new_key[i] = prev_key[i] ^ new_key[i - 4]; } round_key[round] = new_key; } round_key } fn rot_word(word: [u8; 4]) -> [u8; 4] { [word[1], word[2], word[3], word[0]] } fn xor_rcon(word: [u8; 4], round: usize) -> [u8; 4] { let mut result = word; result[0] ^= RCON[round][0]; // 只对第一个字节进行Rcon异或 result } fn sub_word(word: [u8; 4]) -> [u8; 4] { [ SBOX[word[0] as usize], SBOX[word[1] as usize], SBOX[word[2] as usize], SBOX[word[3] as usize], ] } fn g_func(word: [u8; 4], round: usize) -> [u8; 4] { let mut result = rot_word(word); result = sub_word(result); result = xor_rcon(result, round); result } pub fn aes_ecb_enc(input: &[u8], key: &[u8; 16]) -> Result> { if !input.len().is_multiple_of(16) { return Err(anyhow!("Invalid input length")); } let mut cipher: Vec = Vec::new(); let round_keys = expand_key(key); for i in 0..(input.len() / 16) { let mut block: [u8; 16] = input[(i * 16)..(i * 16 + 16)].try_into()?; block = add_round_key(&block, &round_keys[0]); for round_key in round_keys.iter().take(10).skip(1) { block = sub_bytes(&block); block = shift_rows(&block); block = mix_columns(&block); block = add_round_key(&block, round_key); } block = sub_bytes(&block); block = shift_rows(&block); block = add_round_key(&block, &round_keys[10]); cipher.extend(block); } Ok(cipher) } pub fn aes_ecb_dec(input: &[u8], key: &[u8; 16]) -> Result> { if !input.len().is_multiple_of(16) { return Err(anyhow!("Invalid input length")); } let mut plaintext: Vec = Vec::new(); let round_keys = expand_key(key); for i in 0..(input.len() / 16) { let mut block: [u8; 16] = input[(i * 16)..(i * 16 + 16)].try_into()?; block = add_round_key(&block, &round_keys[10]); block = inv_shift_rows(&block); block = inv_sub_bytes(&block); for j in 0..9 { block = add_round_key(&block, &round_keys[9 - j]); block = inv_mix_columns(&block); block = inv_shift_rows(&block); block = inv_sub_bytes(&block); } block = add_round_key(&block, &round_keys[0]); plaintext.extend(block); } Ok(plaintext) } pub fn aes_cbc_enc(input: &[u8], key: &[u8; 16], iv: &[u8; 16]) -> Result> { if !input.len().is_multiple_of(16) { return Err(anyhow!("Invalid input length")); } let mut cipher: Vec = Vec::new(); let round_keys = expand_key(key); let mut prev_block = *iv; for i in 0..(input.len() / 16) { let mut block: [u8; 16] = input[(i * 16)..(i * 16 + 16)].try_into()?; block = block .iter() .zip(prev_block.iter()) .map(|(b, iv)| b ^ iv) .collect::>() .try_into() .unwrap(); block = add_round_key(&block, &round_keys[0]); for round_key in round_keys.iter().take(10).skip(1) { block = sub_bytes(&block); block = shift_rows(&block); block = mix_columns(&block); block = add_round_key(&block, round_key); } block = sub_bytes(&block); block = shift_rows(&block); block = add_round_key(&block, &round_keys[10]); cipher.extend(block); prev_block = block; } Ok(cipher) } pub fn aes_cbc_dec(input: &[u8], key: &[u8; 16], iv: &[u8; 16]) -> Result> { if !input.len().is_multiple_of(16) { return Err(anyhow!("Invalid input length")); } let mut plaintext: Vec = Vec::new(); let round_keys = expand_key(key); let mut prev_block = *iv; for i in 0..(input.len() / 16) { let mut block: [u8; 16] = input[(i * 16)..(i * 16 + 16)].try_into()?; block = add_round_key(&block, &round_keys[10]); block = inv_shift_rows(&block); block = inv_sub_bytes(&block); for j in 0..9 { block = add_round_key(&block, &round_keys[9 - j]); block = inv_mix_columns(&block); block = inv_shift_rows(&block); block = inv_sub_bytes(&block); } block = add_round_key(&block, &round_keys[0]); block = block .iter() .zip(prev_block.iter()) .map(|(b, iv)| b ^ iv) .collect::>() .try_into() .unwrap(); plaintext.extend(block); prev_block = input[(i * 16)..(i * 16 + 16)].try_into()?; } Ok(plaintext) } pub fn pkcs7_padding(data: &mut Vec, block_size: usize) { if block_size == 0 { panic!("Block size must be greater than zero"); } if block_size > 255 { panic!("Block size must be less than or equal to 255"); } let mut padding_length = block_size - (data.len() % block_size); if padding_length == 0 { padding_length = block_size; } data.extend(vec![padding_length as u8; padding_length]); } pub fn pkcs7_unpadding(input: &[u8]) -> Result> { if input.is_empty() { return Err(anyhow!("Input cannot be empty")); } let padding_length = *input.last().unwrap(); if padding_length == 0 || padding_length > input.len() as u8 { return Err(anyhow!("Invalid PKCS#7 padding")); } for &byte in input.iter().rev().take(padding_length as usize) { if byte != padding_length { return Err(anyhow!("Invalid PKCS#7 padding")); } } Ok(input[..input.len() - padding_length as usize].to_vec()) } pub fn is_ecb(cipher: &[u8]) -> bool { // Check if the input is a valid ECB encrypted data let mut seen_blocks = HashSet::new(); for chunk in cipher.chunks(16) { if seen_blocks.contains(chunk) { return true; // Duplicate block found, indicating ECB mode } seen_blocks.insert(chunk); } false } pub fn is_valid_english(input_str: &str, ratio: Option) -> bool { let ratio = ratio.unwrap_or(0.6); let mut total_chars = 0; let mut alphabet_chars = 0; let mut prev_char = None; for c in input_str.chars() { // 检查连续空格 if c == ' ' && prev_char == Some(' ') { return false; } // 检查是否为可打印字符 if !(c.is_ascii_lowercase() || c.is_ascii_uppercase() || c.is_ascii_digit() || " .,!?;:'\"-()".contains(c)) { return false; } // 检查是否为换行符 if c == '\n' { return false; } total_chars += 1; if c.is_alphabetic() { alphabet_chars += 1; } prev_char = Some(c); } // 字符占文本的比例 let alphabet_ratio = alphabet_chars as f32 / total_chars as f32; if alphabet_ratio < ratio { return false; } true } pub fn xor_with_key(input: &[u8], key: &[u8]) -> Result> { if key.is_empty() { return Err(anyhow!("empty key")); } Ok(input .iter() .zip(key.iter().cycle()) .map(|(&a, &b)| a ^ b) .collect()) } pub fn gen_random_key() -> [u8; 16] { let mut rng = rand::rng(); let mut key = [0u8; 16]; rng.fill(&mut key); key } pub fn aes_ctr_enc(input: &[u8], key: &[u8; 16], nonce: u64) -> Result> { let mut key_stream = Vec::new(); for round in 0..=(input.len() / 16) as u64 { let input: Vec = nonce .to_le_bytes() .into_iter() .chain(round.to_le_bytes()) .collect(); let stream_block = aes_ecb_enc(&input, key)?; key_stream.extend(stream_block); } let output: Vec = input.iter().zip(key_stream).map(|(&a, b)| a ^ b).collect(); Ok(output) } pub fn aes_ctr_dec(input: &[u8], key: &[u8; 16], nonce: u64) -> Result> { aes_ctr_enc(input, key, nonce) } pub struct MT19937 { mt: [u32; 624], index: usize, } impl MT19937 { pub fn new(seed: u32) -> Self { let mut mt = [0; 624]; mt[0] = seed; for i in 1..624 { mt[i] = 0x6c078965u32 .wrapping_mul(mt[i - 1] ^ (mt[i - 1] >> 30)) .wrapping_add(i as u32) } let index = 0; MT19937 { mt, index } } pub fn extract_number(&mut self) -> u32 { if self.index == 0 { self.generate_numbers(); } let mut result = self.mt[self.index]; result ^= result >> 11; result ^= (result << 7) & 0x9d2c5680; result ^= (result << 15) & 0xefc60000; result ^= result >> 18; self.index = (self.index + 1) % 624; result } fn generate_numbers(&mut self) { for i in 0..624 { let y: u32 = (self.mt[i] & 0x80000000) + (self.mt[(i + 1) % 624] & 0x7fffffff); self.mt[i] = self.mt[(i + 397) % 624] ^ (y >> 1); if !y.is_multiple_of(2) { self.mt[i] ^= 0x9908b0df; } } } } pub fn sha1(input: &[u8]) -> [u8; 20] { let mut h0 = 0x67452301u32; let mut h1 = 0xEFCDAB89u32; let mut h2 = 0x98BADCFEu32; let mut h3 = 0x10325476u32; let mut h4 = 0xC3D2E1F0u32; let message_bits_len = input.len() * 8; let mut buffer = input.to_vec(); buffer.push(0x80u8); while (buffer.len() % 64) != 56 { buffer.push(0x00u8); } buffer.extend_from_slice(&(message_bits_len as u64).to_be_bytes()); for chunk in buffer.chunks(64) { let mut extend_buf = [0u32; 80]; for i in 0..16 { let bytes: [u8; 4] = chunk[4 * i..4 * i + 4].try_into().unwrap(); extend_buf[i] = u32::from_be_bytes(bytes); } for i in 16..80 { extend_buf[i] = (extend_buf[i - 3] ^ extend_buf[i - 8] ^ extend_buf[i - 14] ^ extend_buf[i - 16]) .rotate_left(1); } let mut a = h0; let mut b = h1; let mut c = h2; let mut d = h3; let mut e = h4; for (i, &w_i) in extend_buf.iter().enumerate() { let f = match i { 0..20 => (b & c) | (!b & d), 20..40 => b ^ c ^ d, 40..60 => (b & c) | (b & d) | (c & d), 60..80 => b ^ c ^ d, _ => panic!("Invalid round: {}", i), }; let k = match i { 0..20 => 0x5A827999, 20..40 => 0x6ED9EBA1, 40..60 => 0x8F1BBCDC, 60..80 => 0xCA62C1D6, _ => panic!("Invalid round: {}", i), }; let temp = a .rotate_left(5) .wrapping_add(f) .wrapping_add(e) .wrapping_add(w_i) .wrapping_add(k); e = d; d = c; c = b.rotate_left(30); b = a; a = temp; } h0 = h0.wrapping_add(a); h1 = h1.wrapping_add(b); h2 = h2.wrapping_add(c); h3 = h3.wrapping_add(d); h4 = h4.wrapping_add(e); } let mut digest = [0u8; 20]; digest[0..4].copy_from_slice(&h0.to_be_bytes()); digest[4..8].copy_from_slice(&h1.to_be_bytes()); digest[8..12].copy_from_slice(&h2.to_be_bytes()); digest[12..16].copy_from_slice(&h3.to_be_bytes()); digest[16..20].copy_from_slice(&h4.to_be_bytes()); digest }