diff --git a/src/lib.rs b/src/lib.rs index f751bcf..06688d0 100644 --- a/src/lib.rs +++ b/src/lib.rs @@ -22,6 +22,15 @@ struct Point { curve: CurveFp, } +/// 椭圆曲线上的点(雅可比坐标) +#[derive(Clone)] +struct JacobianPoint { + x: BigUint, // X 坐标 + y: BigUint, // Y 坐标 + z: BigUint, // Z 坐标 + curve: CurveFp, // 椭圆曲线的参数 +} + // Initialize the SM2 Curve fn sm2p256v1() -> CurveFp { CurveFp { @@ -139,10 +148,8 @@ fn mod_inverse(a: &BigUint, m: &BigUint) -> BigUint { t } -fn point_addition(p1: &Point, p2: &Point) -> Point { - let curve = &p1.curve; - let p = &curve.p; +fn point_addition(p1: &Point, p2: &Point) -> Point { if p1.x.is_zero() && p1.y.is_zero() { return p2.clone(); } @@ -150,46 +157,162 @@ fn point_addition(p1: &Point, p2: &Point) -> Point { return p1.clone(); } - let lambda = if p1.x == p2.x && p1.y == p2.y { - let num = (BigUint::from(3u32) * &p1.x * &p1.x + &curve.a) % p; - let denom = (BigUint::from(2u32) * &p1.y) % p; - (num * mod_inverse(&denom, p)) % p - } else { - let num = ((&p2.y + p) - &p1.y) % p; - let denom = ((&p2.x + p) - &p1.x) % p; + from_jacobian(jacobian_add(to_jacobian(p1), to_jacobian(p2))) +} - (num * mod_inverse(&denom, p)) % p - }; +/// 将仿射坐标转换为雅可比坐标 (X, Y, Z) +fn to_jacobian(p: &Point) -> JacobianPoint { + JacobianPoint { + x: p.x.clone(), + y: p.y.clone(), + z: BigUint::one(), // Z = 1 表示仿射坐标 + curve: sm2p256v1(), + } +} - let x3 = (lambda.clone() * &lambda - &p1.x - &p2.x) % p; - let y3 = (lambda * (&p1.x + p - &x3) - &p1.y) % p; +/// 将雅可比坐标转换为仿射坐标 +fn from_jacobian(p: JacobianPoint) -> Point { + if p.z.is_zero() { + return Point { + x: BigUint::zero(), + y: BigUint::zero(), + curve: sm2p256v1(), + }; + } + let p_mod = &p.curve.p; + + // 计算 Z 的模反 + let z_inv = mod_inverse(&p.z, p_mod); + let z_inv2 = (&z_inv * &z_inv) % p_mod; // Z_inv^2 + let z_inv3 = (&z_inv2 * &z_inv) % p_mod; // Z_inv^3 + + // 计算 x = X * Z_inv^2, y = Y * Z_inv^3 + let x_affine = (&p.x * &z_inv2) % p_mod; + let y_affine = (&p.y * &z_inv3) % p_mod; Point { + x: x_affine, + y: y_affine, + curve: sm2p256v1(), + } +} + +/// 雅可比坐标下的点加法 +fn jacobian_add(p1: JacobianPoint, p2: JacobianPoint) -> JacobianPoint { + if p1.z.is_zero() { + return p2.clone(); + } + if p2.z.is_zero() { + return p1.clone(); + } + + let p_mod = &p1.curve.p; + + // U1 = X1 * Z2^2, U2 = X2 * Z1^2 + let z1z1 = (&p1.z * &p1.z) % p_mod; + let z2z2 = (&p2.z * &p2.z) % p_mod; + let u1 = (&p1.x * &z2z2) % p_mod; + let u2 = (&p2.x * &z1z1) % p_mod; + + // S1 = Y1 * Z2^3, S2 = Y2 * Z1^3 + let z1z1z1 = (&z1z1 * &p1.z) % p_mod; + let z2z2z2 = (&z2z2 * &p2.z) % p_mod; + let s1 = (&p1.y * &z2z2z2) % p_mod; + let s2 = (&p2.y * &z1z1z1) % p_mod; + + if u1 == u2 && s1 == s2 { + // 点倍运算 (p1 == p2) + return jacobian_double(p1); + } + + // H = U2 - U1, R = S2 - S1 + let h = (u2 + p_mod - &u1) % p_mod; + let r = (s2 + p_mod - &s1) % p_mod; + + // X3 = R^2 - H^3 - 2 * U1 * H^2 + let h2 = (&h * &h) % p_mod; + let h3 = (&h2 * &h) % p_mod; + let x3 = (&r * &r + p_mod - &h3 - (&BigUint::from(2u32) * &u1 * &h2) % p_mod) % p_mod; + + // Y3 = R * (U1 * H^2 - X3) - S1 * H^3 + let y3 = + (&r * ((&u1 * &h2 + p_mod - (&x3 % p_mod)) % p_mod) + p_mod - (&s1 * &h3) % p_mod) % p_mod; + + // Z3 = Z1 * Z2 * H + let z3 = (&p1.z * &p2.z * &h) % p_mod; + + JacobianPoint { x: x3, y: y3, + z: z3, + curve: sm2p256v1(), + } +} + +/// 雅可比坐标下的点倍运算 +fn jacobian_double(p: JacobianPoint) -> JacobianPoint { + let curve = &p.curve; + let p_mod = &curve.p; + + if p.y.is_zero() { + return JacobianPoint { + x: BigUint::zero(), + y: BigUint::zero(), + z: BigUint::zero(), + curve: curve.clone(), + }; + } + + // S = 4 * X * Y^2 + let y2 = (&p.y * &p.y) % p_mod; + let s = (&p.x * &y2 * BigUint::from(4u32)) % p_mod; + + // M = 3 * X^2 + a * Z^4 + let z2 = (&p.z * &p.z) % p_mod; + let z4 = (&z2 * &z2) % p_mod; + let m = ((&p.x * &p.x * BigUint::from(3u32)) + &curve.a * &z4) % p_mod; + + // X3 = M^2 - 2 * S + let x3 = (&m * &m + p_mod - &s * BigUint::from(2u32)) % p_mod; + + // Y3 = M * (S - X3) - 8 * Y^4 + let y4 = (&y2 * &y2) % p_mod; + let y3 = (&m * (&s + p_mod - &x3) + p_mod - BigUint::from(8u32) * &y4) % p_mod; + + // Z3 = 2 * Y * Z + let z3 = (&p.y * &p.z * BigUint::from(2u32)) % p_mod; + + JacobianPoint { + x: x3, + y: y3, + z: z3, curve: curve.clone(), } } fn point_multiplication(p: &Point, n: &BigUint) -> Point { - let mut result = Point { + let mut result = JacobianPoint { x: BigUint::zero(), - y: BigUint::zero(), + y: BigUint::one(), // 无穷远点的雅可比坐标表示 + z: BigUint::zero(), curve: p.curve.clone(), }; - let mut addend = p.clone(); + // 将输入点从仿射坐标转换为雅可比坐标 + let mut addend = to_jacobian(p); let mut k = n.clone(); + // 使用二进制展开法进行点乘运算 while !k.is_zero() { if &k % 2u32 == BigUint::one() { - result = point_addition(&result, &addend); + result = jacobian_add(result, addend.clone()); } - addend = point_addition(&addend, &addend); + addend = jacobian_double(addend); // 倍点运算 k >>= 1; } - result + // 将结果从雅可比坐标转换为仿射坐标 + from_jacobian(result) } /// SM2 addition @@ -213,13 +336,13 @@ fn add(p1: (BigUint, BigUint), p2: (BigUint, BigUint)) -> (BigUint, BigUint) { let point1 = Point { x: x1, y: y1, - curve: curve.clone(), + curve: sm2p256v1(), }; let point2 = Point { x: x2, y: y2, - curve: curve.clone(), + curve: sm2p256v1(), }; let result = point_addition(&point1, &point2); @@ -232,9 +355,9 @@ fn multiply(point: (BigUint, BigUint), n: BigUint) -> (BigUint, BigUint) { let curve = sm2p256v1(); // Construct the point with BigUint values let point = Point { - x: point.0.clone(), - y: point.1.clone(), - curve: curve.clone(), + x: point.0, + y: point.1, + curve, }; // Perform point multiplication let result = point_multiplication(&point, &n);