ecc_rs/ecc_py.py
2025-04-01 13:51:29 +08:00

133 lines
3.3 KiB
Python

from typing import Tuple
point = Tuple[int, int]
# 生成密钥对模块
class CurveFp:
def __init__(self, A, B, P, N, Gx, Gy, name):
self.A = A
self.B = B
self.P = P
self.N = N
self.Gx = Gx
self.Gy = Gy
self.name = name
sm2p256v1 = CurveFp(
name="sm2p256v1",
A=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC,
B=0x28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93,
P=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF,
N=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123,
Gx=0x32C4AE2C1F1981195F9904466A39C9948FE30BBFF2660BE1715A4589334C74C7,
Gy=0xBC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0,
)
def multiply(a: point, n: int) -> point:
N = sm2p256v1.N
A = sm2p256v1.A
P = sm2p256v1.P
return fromJacobian(jacobianMultiply(toJacobian(a), n, N, A, P), P)
def add(
a: point,
b: point,
) -> point:
A = sm2p256v1.A
P = sm2p256v1.P
return fromJacobian(jacobianAdd(toJacobian(a), toJacobian(b), A, P), P)
def inv(a: int, n: int) -> int:
if a == 0:
return 0
lm, hm = 1, 0
low, high = a % n, n
while low > 1:
r = high // low
nm, new = hm - lm * r, high - low * r
lm, low, hm, high = nm, new, lm, low
return lm % n
def toJacobian(Xp_Yp: point) -> Tuple[int, int, int]:
Xp, Yp = Xp_Yp
return (Xp, Yp, 1)
def fromJacobian(Xp_Yp_Zp: Tuple[int, int, int], P: int) -> point:
Xp, Yp, Zp = Xp_Yp_Zp
z = inv(Zp, P)
return ((Xp * z**2) % P, (Yp * z**3) % P)
def jacobianDouble(
Xp_Yp_Zp: Tuple[int, int, int], A: int, P: int
) -> Tuple[int, int, int]:
Xp, Yp, Zp = Xp_Yp_Zp
if not Yp:
return (0, 0, 0)
ysq = (Yp**2) % P
S = (4 * Xp * ysq) % P
M = (3 * Xp**2 + A * Zp**4) % P
nx = (M**2 - 2 * S) % P
ny = (M * (S - nx) - 8 * ysq**2) % P
nz = (2 * Yp * Zp) % P
return (nx, ny, nz)
def jacobianAdd(
Xp_Yp_Zp: Tuple[int, int, int], Xq_Yq_Zq: Tuple[int, int, int], A: int, P: int
) -> Tuple[int, int, int]:
Xp, Yp, Zp = Xp_Yp_Zp
Xq, Yq, Zq = Xq_Yq_Zq
if not Yp:
return (Xq, Yq, Zq)
if not Yq:
return (Xp, Yp, Zp)
U1 = (Xp * Zq**2) % P
U2 = (Xq * Zp**2) % P
S1 = (Yp * Zq**3) % P
S2 = (Yq * Zp**3) % P
if U1 == U2:
if S1 != S2:
return (0, 0, 1)
return jacobianDouble((Xp, Yp, Zp), A, P)
H = U2 - U1
R = S2 - S1
H2 = (H * H) % P
H3 = (H * H2) % P
U1H2 = (U1 * H2) % P
nx = (R**2 - H3 - 2 * U1H2) % P
ny = (R * (U1H2 - nx) - S1 * H3) % P
nz = (H * Zp * Zq) % P
return (nx, ny, nz)
def jacobianMultiply(
Xp_Yp_Zp: Tuple[int, int, int], n: int, N: int, A: int, P: int
) -> Tuple[int, int, int]:
Xp, Yp, Zp = Xp_Yp_Zp
if Yp == 0 or n == 0:
return (0, 0, 1)
if n == 1:
return (Xp, Yp, Zp)
if n < 0 or n >= N:
return jacobianMultiply((Xp, Yp, Zp), n % N, N, A, P)
if (n % 2) == 0:
return jacobianDouble(jacobianMultiply((Xp, Yp, Zp), n // 2, N, A, P), A, P)
if (n % 2) == 1:
return jacobianAdd(
jacobianDouble(jacobianMultiply((Xp, Yp, Zp), n // 2, N, A, P), A, P),
(Xp, Yp, Zp),
A,
P,
)
raise ValueError("jacobian Multiply error")