133 lines
3.3 KiB
Python
133 lines
3.3 KiB
Python
from typing import Tuple
|
|
|
|
point = Tuple[int, int]
|
|
|
|
|
|
# 生成密钥对模块
|
|
class CurveFp:
|
|
def __init__(self, A, B, P, N, Gx, Gy, name):
|
|
self.A = A
|
|
self.B = B
|
|
self.P = P
|
|
self.N = N
|
|
self.Gx = Gx
|
|
self.Gy = Gy
|
|
self.name = name
|
|
|
|
|
|
sm2p256v1 = CurveFp(
|
|
name="sm2p256v1",
|
|
A=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC,
|
|
B=0x28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93,
|
|
P=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF,
|
|
N=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123,
|
|
Gx=0x32C4AE2C1F1981195F9904466A39C9948FE30BBFF2660BE1715A4589334C74C7,
|
|
Gy=0xBC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0,
|
|
)
|
|
|
|
|
|
def multiply(a: point, n: int) -> point:
|
|
|
|
N = sm2p256v1.N
|
|
A = sm2p256v1.A
|
|
P = sm2p256v1.P
|
|
return fromJacobian(jacobianMultiply(toJacobian(a), n, N, A, P), P)
|
|
|
|
|
|
def add(
|
|
a: point,
|
|
b: point,
|
|
) -> point:
|
|
A = sm2p256v1.A
|
|
P = sm2p256v1.P
|
|
return fromJacobian(jacobianAdd(toJacobian(a), toJacobian(b), A, P), P)
|
|
|
|
|
|
def inv(a: int, n: int) -> int:
|
|
if a == 0:
|
|
return 0
|
|
lm, hm = 1, 0
|
|
low, high = a % n, n
|
|
while low > 1:
|
|
r = high // low
|
|
nm, new = hm - lm * r, high - low * r
|
|
lm, low, hm, high = nm, new, lm, low
|
|
return lm % n
|
|
|
|
|
|
def toJacobian(Xp_Yp: point) -> Tuple[int, int, int]:
|
|
Xp, Yp = Xp_Yp
|
|
return (Xp, Yp, 1)
|
|
|
|
|
|
def fromJacobian(Xp_Yp_Zp: Tuple[int, int, int], P: int) -> point:
|
|
Xp, Yp, Zp = Xp_Yp_Zp
|
|
z = inv(Zp, P)
|
|
return ((Xp * z**2) % P, (Yp * z**3) % P)
|
|
|
|
|
|
def jacobianDouble(
|
|
Xp_Yp_Zp: Tuple[int, int, int], A: int, P: int
|
|
) -> Tuple[int, int, int]:
|
|
Xp, Yp, Zp = Xp_Yp_Zp
|
|
if not Yp:
|
|
return (0, 0, 0)
|
|
ysq = (Yp**2) % P
|
|
S = (4 * Xp * ysq) % P
|
|
M = (3 * Xp**2 + A * Zp**4) % P
|
|
nx = (M**2 - 2 * S) % P
|
|
ny = (M * (S - nx) - 8 * ysq**2) % P
|
|
nz = (2 * Yp * Zp) % P
|
|
return (nx, ny, nz)
|
|
|
|
|
|
def jacobianAdd(
|
|
Xp_Yp_Zp: Tuple[int, int, int], Xq_Yq_Zq: Tuple[int, int, int], A: int, P: int
|
|
) -> Tuple[int, int, int]:
|
|
Xp, Yp, Zp = Xp_Yp_Zp
|
|
Xq, Yq, Zq = Xq_Yq_Zq
|
|
if not Yp:
|
|
return (Xq, Yq, Zq)
|
|
if not Yq:
|
|
return (Xp, Yp, Zp)
|
|
U1 = (Xp * Zq**2) % P
|
|
U2 = (Xq * Zp**2) % P
|
|
S1 = (Yp * Zq**3) % P
|
|
S2 = (Yq * Zp**3) % P
|
|
if U1 == U2:
|
|
if S1 != S2:
|
|
return (0, 0, 1)
|
|
return jacobianDouble((Xp, Yp, Zp), A, P)
|
|
H = U2 - U1
|
|
R = S2 - S1
|
|
H2 = (H * H) % P
|
|
H3 = (H * H2) % P
|
|
U1H2 = (U1 * H2) % P
|
|
nx = (R**2 - H3 - 2 * U1H2) % P
|
|
ny = (R * (U1H2 - nx) - S1 * H3) % P
|
|
nz = (H * Zp * Zq) % P
|
|
return (nx, ny, nz)
|
|
|
|
|
|
def jacobianMultiply(
|
|
Xp_Yp_Zp: Tuple[int, int, int], n: int, N: int, A: int, P: int
|
|
) -> Tuple[int, int, int]:
|
|
Xp, Yp, Zp = Xp_Yp_Zp
|
|
if Yp == 0 or n == 0:
|
|
return (0, 0, 1)
|
|
if n == 1:
|
|
return (Xp, Yp, Zp)
|
|
if n < 0 or n >= N:
|
|
return jacobianMultiply((Xp, Yp, Zp), n % N, N, A, P)
|
|
if (n % 2) == 0:
|
|
return jacobianDouble(jacobianMultiply((Xp, Yp, Zp), n // 2, N, A, P), A, P)
|
|
if (n % 2) == 1:
|
|
return jacobianAdd(
|
|
jacobianDouble(jacobianMultiply((Xp, Yp, Zp), n // 2, N, A, P), A, P),
|
|
(Xp, Yp, Zp),
|
|
A,
|
|
P,
|
|
)
|
|
|
|
raise ValueError("jacobian Multiply error")
|