MPC R1B{E 22z 1T B

RIGE

Contents

. MPC 1B{EE o]

. S FIA

. BB R LIAE (DAG) SEIBSHE IR
IR IRIERIBF Y

. 1xl"|' "JJ}'HZE’J %1|:|/JIL-*E

e /n-H

ool B~ WIMNBR

4 [55

EREBEE, HTEESBXENzR:
—ERIBEEEE AR send()E recv(O) A%
(HRXEBRARIIEEE 0] R

7= 1. —HREZ—AHRESIHIE

1 # ®Ri%XA @ Python
2 for item in items:

3 socket_to_peer.send(item)

1 # =IA @ Python

2 for i in len(items):
3 items[i] = socket_to_peer.recv()

7= 2. —HRZHRIANIE

1 # ®Ri%XA @ Python
2 for peer in peers:

3 socket_to_peer.send(data)

1 # =IA @ Python

2 for peer in peers:
3 data = socket_to_peer.recv()

O]l 1: @SRV EHE AR o) &

XEFNEEET, BRARESER, SSFESIENKGEIRR, BRI 9:

- BHENRIE: BXHIEPR, send() T recv() ZPFHER, EFIEEFERIT, BE
S ENEERIETE TN,

- EIEERIT: ERWH, F—XWEERE (TRRAZELEREI) BNFFAI—X
IRIEMR R e T BE RN,

o MEBEAREN : XMpoRGIMERIINFSE, WAHERE] MEENE, THEEFESZD
S5ERRTRERERRNIIRT, SHRELEZARDFBAITEIEEEITNMLS
%

Jdo

Bl

Aia= 2 7l

FoIRAREIFHEHE @ Python
peers = [alice, bob, carol]

for peer in peers:

socket_to_peer.send(data)

socket_to_alice.send(data)
socket_to_bob.send(data) # FFalice;ZBMIAKREIEIERT, LITRBEASHIT
socket_to_carol.send(data) # 7EbobSEMIAWEIZIERT, HITREBASHT

o g9 6o o1 & W N B

Aia= 2 7l

FoIRARWHEHNE @ Python
peers = [alice, bob, carol]

for peer in peers:

socket_to_peer.recv(data)

socket_to_alice.recv(data)
socket_to_bob.recv(data) # EE&EEWRaliceiEr], ITRKBASHIT
socket_to_carol.recv(data) # mEZEWEIbobZIER], EITREASHIT

o g9 6o o1 & W N B

itz ElZRR

CPU 1 I/0 1 CPU 2 I/0 2

RITIEHTESLE

[B)ER 2: R4gB{E AR R

BATERAR Tcp 0 HTTP/1.1 tHhXERAR]E, BEXRMIE, SHAMMPCIZ=TS
B EERHEERL N :

« EERHEKX:

» TCP =)XIEF: BRFEBEEESEIEF, wREBLE,

» TCPIERDN: EEVHFREEERIE, EEELTEENI AT,

o BSGRERR:
» HTTP/1.1 BASKPHE : ENMEBXREHER—&EE LELEFAEEX,
» TURHEIIRICSL: HTTP KERX AR, GERENLRER.
o BIREWREZMIL:
» BIANEE4E: NAS R EGEE, IBKTMEHE,
» FIEFEE . {EF JSON EXAMINLE ZHFEIRIVAIRE R, LIEEREFIE,

g x0iR

13 / 55

ERNHBREEBEENRZA, BIERTE-—TNRETHE

RS REETIH LN —HEBH,

B TAT A FRAE & T SR 1 F SRIE AR

- B5 (SHEWAR): MEEARRE, AEHBERE—ESIEMT, PRt
LHEERT,

7o (AFEHENAN) MEEERTE, RSREM—IEoIMENZESS, (RaJCA
[O2 B EErFHL. BIR, =ENEESS E)J‘J, RBEEE,

= ?zf‘ 2t
RE "R —TMEEK,
. “HY’*“"?TL;-E B AN &l
« “InFH PR E R EESHAE R LA ITHE MR,

HR5FTHXRA

BERIE, ENZR“BiR"5“FE"IIXZA,
« HEREFATHIBNR:

» HANELERRFERMNAIES MES, BRERE,
- ROURIZRIABEIRFERZ—:

» EBlmEFAERN—MERTGE
FEEFATRI B2 “ BN — ik (M. BIR. &2) 7,
- ZEIEAFR:

» B=ANER, BEARIE—IN, EER, B EBHEMRE"S, BEEZHiAE,
« RUAER:

» —URWFEREIR, MhEZRTRIREMZENAX (KEFRTIRE), ARES

FREFREENS, BESETH, —MTASNMTER TREES.

RESLEMESINHA %R, BEEMNEHRET, EEE TR —EHN:

- ERFEE RN
» SE2MSGERRNSIMENE—IEN, REZHIEL, SBEFLE.
> RS T ARNER—RARLEF, REERTEE—HIE,
» BT BBRXMER, EFAFEERS R B VIGIRME, XFEEEZHE,
FF B 3ECAIE L,
- FEIESHIPRS:
» & Python XIFHIES, ATEHAZYG (=EMERR0 GIL), BIEFEAZS%
12, ULFRELERMNEITZMTEES, XRE 7EE CPU ZERRIZ RIS,
- BIER C/C++XKIES, RARE GIL, EFHNEELIRRNEISHIHIELZ,
BE—1EXPEE,

« BIEE WM
» B{ERER Rust XHEERIELTELEEMNIES, ZSLEMNBEH e NIRRT RIE
PRE (%5512 async/await) AR TIERE, LEHEELIEXREME I/
0 B,

FE, AFSNBRiITIIRF, RoOREFEREREGE. BNEZ THIFRER,

1833 B [L IAE (DAG) SKIL B St R ¢

19 / 55

FA VBT DA SR RS IR AL B el &, T {E R FRFMEF SRR AL TTHRER K R IR,
FIENHIRIEYTEIA 21X, FATAIARIE— MK, BERAEZTEZEEFX, ABE—
WIEMERAAHR, F—RiE

BIWAHERE, gIEEHrX, @AM AR LI MR,

FaHt R

O 00 g9 6o U1 &~ W N B

FuRICREHRRBE

items = [iteml, item2, item3]
for item in items:

socket_to_peer.send(item)

buffer = []

for item in items:
buffer.append(item)

socket_to_peer.send(buffer)

@ Python

HEIRIEERR

CPU 1

CPU 2

CPU 3

I/0 1

R ES S

22 [55

REEHRNL, MRSANTEAIUFAITHT, BLEIMIFEIGFIESIR -2
E%IEO

BIENMIRIEY XL 2S5 RN, BANERIERA—RXFH %, EFFHIARIRIE,
RIXEMEE,

H =G

1 # peers = [socket_to_alice, socket_to_bob, socket_to_carol] @ Python
2

3 # SIE—HAHLNREES

4 tasks = [

5 socket_to_peer.send(data) for peer in peers

6 1

7

8 # BINRMITRIERIZES
9 await asyncio.gather(xtasks)

H&iRIEERR

CPU 1 I/0 1 CPU 4

CPU 2 I/0 2

CPU 3 I/0 3

FoHTESEM

N7 DAG j‘—_,‘;g 25 / 55

ERBVANE DAG HEZR M ERIFEES [11,

SECRET
FLOW/SiE
LA ERIZIDEER:

TR TEE (DAG) AEMSLEMDY, MEAREFHITIERIISME,
XAFERENmIE, B, TENREDTUREMZETENFESRAENE,
- BAIES: A%&ER Python K45 MPC ZiE,
« DHIVESR: REREB—MEANSHIVAITES (Ray [2]) RiFEFAMITEF
i EES.

26 / 55

=K
- RS, T LF, FJUAEEBEE L. BURMKIITHIRINEE,
- XX, Blo)HE SR,

TR
o BT AEFNERBSHNAERK(WMEHIZEA Python WKR), MHER
MEBFESHAE,

- ERAHFZ, ERERERES,

Frx DAG 35 27/ 55

TiRA0ERS DAG HEZRE MP-SPDZ [3], HET{ERIETEAME:

« JRIZENME: FE£BFEHR—F#E1H MPC iZiHHAUEEEIES (DSL) HRE MY,

« IREILIL: 4mi¥231F DSL NEBERIRp — 1 EER. FBSITERE, FHHEITREMKL
(AESIRE. BEHLE) KREBERSNNFTE,

o EHWVIEERE: IBEFER C++3XIM T —NEWNINL, EETRIEFRITX LN RmiF
FHIFDE, BTFRERBXAESEHE, RITIRIEESN,

28 |/ 55

=W

- HEENS. HTFEREINMEET2SITEEFEE, AJLAUHETEEML, BITHNHAE
FEFEN,

TR

« R)EHE, TERIEWINERZFRITEHE, EMSIIKRIRTHZBIURIINISD
o
EE=Z>]tHMAY DSL,

JoE FE PRI HYIB S 1N

30 / 55

RAHERERRZT TCP KK, ERXNHERAM TCP MiEFH[E S HE0 L,
4 8e L LR E,
WIE, BANBEZMAILHE.

TCP KBz 31/ 55

FEEBEH—NHAMZER TCP KiERK, XTARFEHIMEF—MERIIR, 7]
AR RONELIRIT TCP EIZMIEF FH.

TCP KR

MIDBIBRSXI— ConnectionManager, EWRERHFE —1 HashMap {EFiEiEit,
SEZRERN, FMOTERFBER—NEE

- NREECFE, EERFEHREOTE,

- NRAFE, EERNTEITINERE, EAMAR, AKFRMO,

XtF, Tt LEEEEREZEEEW, BLFERDERESLGELELL

use std::collections :: HashMap;

use std::net::{TcpStream, ToSocketAddrs};
use std::io::{self, Write};

struct ConnectionManager {

1
2
3
A
5
6 connections: HashMap<String, TcpStream>,
7

TCP KXl

8

9 impl ConnectionManager {

10 [l FRENEREIL— N FmERE

11 [ENREARI T ek ARABERERERE, T"AEREGERE
12 fn get_connection<A: ToSocketAddrs + ToString>(

13 &mut self, addr: A

14) = io0::Result<&mut TcpStream> {

15 let addr_string = addr.to_string();

16

17 // .entry().or_insert_with() EEMENEE, XERN T EMMEH
18 if !self.connections.contains_key(&addr_string) {
19 Llet stream = TcpStream:: connect(addr)?;

20 self.connections.insert(addr_string.clone(), stream);

TCP KXl 34 / 55

21 }

22

23 Ok(self.connections.get_mut(&addr_string).unwrap())
24 }

25 }

It : BERSNREY

RO R REFHRINRIELSN (AIWR. EMK) EiRAP] AT EEEREmAIRIU (U
Fm) BEE, EMPCH, BAFEEMSEEMAELE, BIFIERNEE
REE,

« XAV (30 JSON):

» L= AZERE, ZTFE,
» TRR: ATRREX, BImEEE, WFIEeEsiEaI MPC BE2E AR,
o TiHHIMEIX (W1 Protobuf, Bincode):
» iR WESRER, BIMEE YR, ESMEEa=RIEIE,
» TR AERANEE,

£ Rust &£3&5H, serde MEZREEE bincode FEREMESM T HFIFICHEEZIEME.

LR (Rust)

BT serde, HARAF/ELEMRLERIN—NIREZ, FBEEMKIFINLHRFY
1t

use serde:: {Serialize, Deserialize};

/[l 1. fEAserdeMZERBMERIMFIE/RFEIIL
#[derive(Serialize, Deserialize, PartialEq, Debug)]
struct MyData {

id: u32,

payload: String,

O 00 g 6 U1 & W N B

10 fn main() {
11 let original = MyData {

LR (Rust)

12
13
14
15
16

17

18
19
20

21

22
23

id: 101,
payload: "hello".to_string(),
};

/] 2. {ERbincodeFEMIRFIILAFT

let serialized_bytes: Vec<u8> =
bincode :: serialize(&original).unwrap();

println!("Serialized: {:?}", &serialized_bytes);

/I 3. NFTRFICEEHIE

Llet deserialized: MyData =
bincode :: deserialize(&serialized_bytes).unwrap();

println!("Deserialized: {:?%}", &deserialized);

LR (Rust)

24 assert_eq!(original, deserialized);
25 1}

23
1L

imIVE 4

TRt ZiE, BilrIEd —EEEE AR REMIVIEE, ML MNEEHE
B el AT BT EFE. IMINESIFRERF MPC REZEFRBMARET EITELERIIZR,

L=

- BLIEE: BEREFEEMNBEEIBIERD, MREEEER,
- FERFEFK: WTFFREIMRUWHMELEHEE,
« SEAPME: RIVEYE/ L 48 0] CATERIRSMAIERT#TT, AREIABIIMIEETT

SRHREE:

« Zlib/Deflate: [ZERABRAES EE, RMES ELEFHEE,

« Snappy: Google A%, UNRBIEFEFFREIEEREZF, BESHELERET
Zlib, EATFMEEEZEXRESHIF=,

o LZ4: FZ—MWIEBRENTIREGSEE, BEGFEELHIR,

EERESEE LN, EEREEMARL MPC IMYFIMLEIAE, WNEE4EEE. 48/ s
“RIRE A Kz CPU T-F%ﬁo

gRPC I3V 41 / 55

gRPC EM Google HARRI—I. SMEER RPC (IZFEUIZIHA) EZR, ERE
REFH AR R FA) Z B By — LB (S a0,

« ET HTTP/2:
> gRPC {£F HTTP/2 fEAEEWIMN, RAZIGFZREH, XEKREFJLAER
4 TCP i LEIRTAIE S NMERFMA, WERfEATBASKEZE), B TR
EEZE A,

- BBy Protobuf:
» BXiAFEF Protocol Buffers (Protobuf) #{TF%{t. #ELF ISON,
Protobuf BTHGIFEIV, FIRE/N. BEREIR,

- XFERIVEE:
» BR T B ER-MM "R, gRPC ERESZFZFFImm. RS immaF e,
XN TRRELERRAKEHIEN MPC i2RIEERH.

QUIC ¥ 42 1 55

QUIC BE—"ErAKEMmEIMY, EWAIE HTTP/3 MEL, ERLITBEIRZEN
JER#E R TCP HIE B X,

« MEF UDP Z.L:
» QUIC fFET TCP, EREFIKER UDP LEIHII TrIEEH. HERH
FINEE,
- FRRTEIERIBASLPHEE:
» HTTP/2 EEBEANTCP EE LSHRER, BUMR—/1 TCPHIREEX, B MEE
FRIFMBREWINEFFEER, XEEMERIBAKEE,
» QUIC FR"MEIM—FLR. BNMNRNEBIEERMIILIE, —MNRNEEAREME
EHMR,

QUIC ¥ 43/ 55

- BRANEREN:
» QUIC WBEMENEF (R0 TCP =XIEF) fMIMZEEF (TLS) §H T, XWT
ERiEE, EEEUXI 0-RTT (FERAE]) FERME, EEWIR,

FMNIT EE 4/ 55

h T BB R EE S IS,

FARIT EE—"F EAN7E MPC iR FRIRIL,

Y51 [E4 TCP/HTTP/1.1 gRPC (HTTP/2 over TCP)|QUIC (HTTP/3 over UDP)
ZHiE | TCP TCP UDP
BASLBRE | M EFEHIE €)=z (TCP HOLB) & GRIBIIL)
EEEN |1 (TCP 3)XIEF + TLS) |18 (TCP 3 XKIEF + TLS) | (@-RTT/1-RTT)
ZRER|T B (NAE) B (EWE)

FFoE [iEEXA (4 ISON) Protobuf (Zi#fl) mi)‘&%?é (&)

MEE | BRIR FE =
&A= | BEIEX/ MM AR5 /RPC SCHNEE / EF &

23 TCP /73 45 / 55

FERRECHRIERTLALEFATEMERTF I/0, tBEiii, FAEIBAA send()/recv()HY
fx, ZIEAS—HEZE, M1 CPU BY e R L EM{ES,

SEREESMIEN, BERNE async/await HE,

async/await AR

=V

« REEEW: RBNEMHZEFEESRERERETSNE, EESFIEZEFLEIR,

- ZAESAK: ETFTEiDE, 2/MESAFERBER, sJTUEMREIRZBEH%, H
ERXNRERF ST,

« ZI—RIEIRALIE . PIUAMEREBESAEMEIRACIENS] (S Rust 89 2), @WHETE
S P RYER IR AL IE ML,

TR
« IDEHIE: FEIEH Future. WITHREMS, FFoIAIE CPUBRERES (A
T2),

o BEPEE: async XKPEFEBERM, async RBAEHETREBEREIA, &
ZINR, BIRTES,

Rust FRYF o SLIINTLE

£ Rust £5H, [ERTEE Stackful 1 Stackless MRS, KR TAEH

A Y A Y I&LI
RITHZE,

Stackful (may HEZR):

« may BETEM Go Goroutine H{FIE, SANHIEHEBE S,

« FEABETUGRELEESRE—MHEITRIZ, WE I0 FIMESWERBMAE,
» B FiEEH,

- AR TE"RE, FEFIXDRTHRET R,

Stackless (tokio HEZE):

« X2 Rust EAMMXIIERAE, EF async/await &%,

s IRIFFFRTNEBEL RSN, AESBARIE.

o WIUEE async/await BVIEEMN, FE“B&"RALE, BREKTESHIEEE
FE B HAVIZH,

X1 F o (LRIBERIZ

49 [55

HABsIFEINARAE D BRITHIMY, BIMYBIBIRNFEXRTH T L —TrIAS
4R, Damgard [4] RBE—1EFETLRRITTHE, BN IXEIIERMEAHES
5B8ERREEMENBARZLA, RNXEXERD VIFFEZ (B archive, B
24 {F 55 MP-SPDZ)

https://github.com/mgeisler/viff

50 / 55

IEER, TIRBHT —LHAZE, W hbMPC[5] , % Dumbo-MPC[61,

52 / 55

GFERETEHEEMIN. FrmEBEULSIMRILIMY, FATRIAA)#H MPC H

ﬁ'—"ﬁﬂﬁ_ﬁ: uu.*E Y 1xl‘|' = f‘tﬁz

- ZILBME: FEESHE
> ZRAMBARTRERE, BEREFREAEEEITESLE, WMES CPU A
x,

- BIFIAE: DAG IR
» GBEESHR HELOLIAE (DAG), BiTinFMEFLILBSH A IBFF L
17, EAPREHB /L F1FT8],

« IBOERE: SNFIE
» LB ERET HTTP/2 (%1 gRPC) =k QUIC (FMHTTP/3) HIMN, FAHE
ZWE M. REEFNSHFICEFIHE,
- EEEE: REEEEH
- dEIPERT, SSMIKERMER, BRMEBEENAXFAERIAE.,

References

[1]

[2]

[3]

J. Ma et al., “SecretFlow-SPU: A Performant and User-
Friendly Framework for Privacy-Preserving Machine Learn-
ing,” in 2023 USENIX Annual Technical Conference (USENIX ATC
23), Boston, MA: USENIX Association, July 2023, pp. 17-33.
[Online]. Available:

P. Moritz et al., “Ray: A Distributed Framework for Emerging
AI Applications.” [Online]. Available:

M. Keller, “MP-SPDZ: A Versatile Framework for Multi-
Party Computation,” in Proceedings of the 2020 ACM SIGSAC

https://www.usenix.org/conference/atc23/presentation/ma
https://www.usenix.org/conference/atc23/presentation/ma
https://arxiv.org/abs/1712.05889
https://arxiv.org/abs/1712.05889

[4]

[5]

[6]

Conference on Computer and Communications Security, 2020.
doi:

I. Damgard, M. Geisler, M. Krgigaard, and J. B. Nielsen,
“Asynchronous Multiparty Computation: Theory and Implemen-
tation,” in Public Key Cryptography - PKC 2009, S. Jarecki
and G. Tsudik, Eds., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009, pp. 160-179.

D. Lu et al., “HoneyBadgerMPC and AsynchroMix: Practical
AsynchronousMPC and its Application to Anonymous Communica-
tion.” [Online]. Available:

Y. Su, Y. Lu, 3J. Li, Y. Wang, C. Dong, and Q. Tang,
“Dumbo-MPC: Efficient Fully Asynchronous MPC with Optimal

https://doi.org/10.1145/3372297.3417872
https://eprint.iacr.org/2019/883
https://eprint.iacr.org/2019/883

Resilience.” [Online]. Available: https: //eprint.iacr.org/
2024/1705

https://eprint.iacr.org/2024/1705
https://eprint.iacr.org/2024/1705

	 MPC通信常见问题
	 预备知识
	 通过有向无环图(DAG)实现通信批次化
	 选择快速的通信协议
	 设计异步化的通信流程
	 总结
	 References

