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EREBEE, HTEESBXENzR:
—ERIBEEEE AR send()E recv(O) A%
(HRXEBRARIIEEE 0] R



7= 1. —HREZ—AHRESIHIE

1 # ®Ri%XA @ Python
2 for item in items:

3 socket_to_peer.send(item)

1 # =IA @ Python

2 for i in len(items):
3 items[i] = socket_to_peer.recv()




7= 2. —HRZHRIANIE

1 # ®Ri%XA @ Python
2 for peer in peers:

3 socket_to_peer.send(data)

1 # =IA @ Python

2 for peer in peers:
3 data = socket_to_peer.recv()
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- BHENRIE: BXHIEPR, send() T recv() ZPFHER, EFIEEFERIT, BE
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# FoIRAREIFHEHE @ Python
# peers = [alice, bob, carol]

# for peer in peers:

# socket_to_peer.send(data)

socket_to_alice.send(data)
socket_to_bob.send(data) # FFalice;ZBMIAKREIEIERT, LITRBEASHIT
socket_to_carol.send(data) # 7EbobSEMIAWEIZIERT, HITREBASHT
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# FoIRARWHEHNE @ Python
# peers = [alice, bob, carol]

# for peer in peers:

# socket_to_peer.recv(data)

socket_to_alice.recv(data)
socket_to_bob.recv(data) # EE&EEWRaliceiEr], ITRKBASHIT
socket_to_carol.recv(data) # mEZEWEIbobZIER], EITREASHIT
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B EERHEERL N :

« EERHEKX:

» TCP = )XIEF: BRFEBEEESEIEF, wREBLE,

» TCPIERDN: EEVHFREEERIE, EEELTEENI AT,

o BSGRERR:
» HTTP/1.1 BASKPHE : ENMEBXREHER—&EE LELEFAEEX,
» TURHEIIRICSL: HTTP KERX AR, GERENLRER.
o BIREWREZMIL:
» BIANEE4E: NAS R EGEE, IBKTMEHE,
» FIEFEE . {EF JSON EXAMINLE ZHFEIRIVAIRE R, LIEEREFIE,
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- ERFEE RN
» SE2MSGERRNSIMENE—IEN, REZHIEL, SBEFLE.
> RS T ARNER—RARLEF, REERTEE—HIE,
» BT BBRXMER, EFAFEERS R B VIGIRME, XFEEEZHE,
FF B 3ECAIE L,
- FEIESHIPRS:
» & Python XIFHIES, ATEHAZYG (=EMERR0 GIL), BIEFEAZS%
12, ULFRELERMNEITZMTEES, XRE 7EE CPU ZERRIZ RIS,
- BIER C/C++XKIES, RARE GIL, EFHNEELIRRNEISHIHIELZ,
BE—1EXPEE,
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# FuRICREHRRBE

# items = [iteml, item2, item3]
# for item in items:

# socket_to_peer.send(item)

buffer = []

for item in items:
buffer.append(item)

socket_to_peer.send(buffer)

@ Python



HEIRIEERR

CPU 1

CPU 2

CPU 3

I/0 1

R ES S




22 [ 55

REEHRNL, MRSANTEAIUFAITHT, BLEIMIFEIGFIESIR -2
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BIENMIRIEY XL 2S5 RN, BANERIERA—RXFH %, EFFHIARIRIE,
RIXEMEE,




H =G

1 # peers = [socket_to_alice, socket_to_bob, socket_to_carol] @ Python
2

3 # SIE—HAHLNREES

4 tasks = [

5 socket_to_peer.send(data) for peer in peers

6 1

7

8 # BINRMITRIERIZES
9 await asyncio.gather(xtasks)
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ERBVANE DAG HEZR M ERIFEES [11,

SECRET
FLOW/SiE
LA ERIZIDEER:

TR TEE (DAG) AEMSLEMDY, MEAREFHITIERIISME,
XAFERENmIE, B, TENREDTUREMZETENFESRAENE,
- BAIES: A%&ER Python K45 MPC ZiE,
« DHIVESR: REREB—MEANSHIVAITES (Ray [2]) RiFEFAMITEF
i EES.
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RAHERERRZT TCP KK, ERXNHERAM TCP MiEFH[E S HE0 L,
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FEEBEH—NHAMZER TCP KiERK, XTARFEHIMEF—MERIIR, 7]
AR RONELIRIT TCP EIZMIEF FH.




TCP KR

MIDBIBRSXI— ConnectionManager, EWRERHFE —1 HashMap {EFiEiEit,
SEZRERN, FMOTERFBER—NEE

- NREECFE, EERFEHREOTE,

- NRAFE, EERNTEITINERE, EAMAR, AKFRMO,

XtF, Tt LEEEEREZEEEW, BLFERDERESLGELELL

use std::collections :: HashMap;

use std::net::{TcpStream, ToSocketAddrs};
use std::io::{self, Write};

struct ConnectionManager {

1
2
3
A
5
6 connections: HashMap<String, TcpStream>,
7
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8

9 impl ConnectionManager {

10 [l FRENEREIL— N FmERE

11 [ ENREARI T ek ARABERERERE, T"AEREGERE
12 fn get_connection<A: ToSocketAddrs + ToString>(

13 &mut self, addr: A

14 ) = io0::Result<&mut TcpStream> {

15 let addr_string = addr.to_string();

16

17 // .entry().or_insert_with() EEMENEE, XERN T EMMEH
18 if !self.connections.contains_key(&addr_string) {
19 Llet stream = TcpStream:: connect(addr)?;

20 self.connections.insert(addr_string.clone(), stream);
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21 }

22

23 Ok(self.connections.get_mut(&addr_string).unwrap())
24 }

25 }
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o TiHHIMEIX (W1 Protobuf, Bincode):
» iR WESRER, BIMEE YR, ESMEEa=RIEIE,
» TR AERANEE,

£ Rust &£3&5H, serde MEZREEE bincode FEREMESM T HFIFICHEEZIEME.




LR (Rust)

BT serde, HARAF/ELEMRLERIN—NIREZ, FBEEMKIFINLHRFY
1t

use serde:: {Serialize, Deserialize};

/[l 1. fEAserdeMZERBMERIMFIE/RFEIIL
#[derive(Serialize, Deserialize, PartialEq, Debug)]
struct MyData {

id: u32,

payload: String,

O 00 g 6 U1 & W N B

10 fn main() {
11 let original = MyData {
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12
13
14
15
16

17

18
19
20

21

22
23

id: 101,
payload: "hello".to_string(),
};

/] 2. {ERbincodeFEMIRFIILAFT

let serialized_bytes: Vec<u8> =
bincode :: serialize(&original).unwrap();

println!("Serialized: {:?}", &serialized_bytes);

/I 3. NFTRFICEEHIE

Llet deserialized: MyData =
bincode :: deserialize(&serialized_bytes).unwrap();

println!("Deserialized: {:?%}", &deserialized);
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24 assert_eq!(original, deserialized);
25 1}
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B el AT BT EFE. IMINESIFRERF MPC REZEFRBMARET EITELERIIZR,
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- BLIEE: BEREFEEMNBEEIBIERD, MREEEER,
- FERFEFK: WTFFREIMRUWHMELEHEE,
« SEAPME: RIVEYE/ L 48 0] CATERIRSMAIERT#TT, AREIABIIMIEETT

SRHREE:

« Zlib/Deflate: [ ZERABRAES EE, RMES ELEFHEE,

« Snappy: Google A%, UNRBIEFEFFREIEEREZF, BESHELERET
Zlib, EATFMEEEZEXRESHIF=,

o LZ4: FZ—MWIEBRENTIREGSEE, BEGFEELHIR,
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XN TRRELERRAKEHIEN MPC i2RIEERH.
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QUIC BE—"ErAKEMmEIMY, EWAIE HTTP/3 MEL, ERLITBEIRZEN
JER#E R TCP HIE B X,

« MEF UDP Z.L:
» QUIC fFET TCP, EREFIKER UDP LEIHII TrIEEH. HERH
FINEE,
- FRRTEIERIBASLPHEE:
» HTTP/2 EEBEANTCP EE LSHRER, BUMR—/1 TCPHIREEX, B MEE
FRIFMBREWINEFFEER, XEEMERIBAKEE,
» QUIC FR"MEIM—FLR. BNMNRNEBIEERMIILIE, —MNRNEEAREME
EHMR,
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- BRANEREN:
» QUIC WBEMENEF (R0 TCP =XIEF ) fMIMZEEF (TLS) §H T, XWT
ERiEE, EEEUXI 0-RTT (FERAE] ) FERME, EEWIR,
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Y51 [E4 TCP/HTTP/1.1 gRPC (HTTP/2 over TCP)|QUIC (HTTP/3 over UDP)
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Stackful (may HEZR):

« may BETEM Go Goroutine H{FIE, SANHIEHEBE S,
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