
MPC的通信架构设计思路

梁俊勇

2025-11-21

Contents

1. MPC通信常见问题

2. 预备知识

3. 通过有向无环图(DAG)实现通信批次化

4. 选择快速的通信协议

5. 设计异步化的通信流程

6. 总结

MPC通信常见问题

4 / 55

在底层通信里，我们常常会遇到这样的场景:

一段代码需要重复调用 send()或者 recv()方法

但是这里有较大的性能问题

场景 1: 一方向另一方发送多个数据 5 / 55

1 # 发送方 Python

2 for item in items:

3 socket_to_peer.send(item)

1 # 接收方 Python

2 for i in len(items):

3 items[i] = socket_to_peer.recv()

场景 2: 一方向多方发送数据 6 / 55

1 # 发送方 Python

2 for peer in peers:

3 socket_to_peer.send(data)

1 # 接收方 Python

2 for peer in peers:

3 data = socket_to_peer.recv()

问题 1: 通信中的数据依赖问题 7 / 55

这其中的问题在于，每次发送与接受，都会存在数据的依赖关系。具体表现为：

• 阻塞式操作: 同步编程中，send() 和 recv() 是阻塞的，程序会暂停执行，直到

当前通信操作完全完成。

• 严格串行: 在循环中，后一次的通信操作（无论是发送还是接收）必须等待前一次

操作彻底完成后才能启动。

• 性能瓶颈: 这种强制性的顺序等待，极大地限制了通信效率，尤其是在需要与多个

参与方进行大量数据交换的场景下，导致系统无法充分利用并行处理能力和网络带

宽。

以场景 2为例 8 / 55

1 # 手动展开发送方循环代码 Python

2 # peers = [alice, bob, carol]

3 # for peer in peers:

4 # socket_to_peer.send(data)

5

6 socket_to_alice.send(data)

7 socket_to_bob.send(data) # 在alice没有确认收到数据前，此行代码不会执行

8 socket_to_carol.send(data) # 在bob没有确认收到数据前，此行代码不会执行

以场景 2为例 9 / 55

1 # 手动展开接收方循环代码 Python

2 # peers = [alice, bob, carol]

3 # for peer in peers:

4 # socket_to_peer.recv(data)

5

6 socket_to_alice.recv(data)

7 socket_to_bob.recv(data) # 在没有接收到alice数据前，此行代码不会执行

8 socket_to_carol.recv(data) # 在没有接收到bob数据前，此行代码不会执行

流程图表示 10 / 55

CPU 1 I/O 1 CPU 2 I/O 2 ...

串行化的计算与处理

问题 2: 传统通信协议的瓶颈 11 / 55

我们常用的 TCP 和 HTTP/1.1 协议虽然可靠，但在大规模、高并发的 MPC场景下会

遇到显著的性能瓶颈：

• 连接开销大:
‣ TCP三次握手: 每次新建连接都需握手，带来固有延迟。
‣ TCP慢启动: 连接初期传输速度受限，短连接无法有效利用带宽。

• 协议效率低:
‣ HTTP/1.1队头阻塞: 单个慢请求会阻塞同一连接上的后续所有请求。
‣ 冗余的报文头: HTTP头部是文本格式，存在大量冗余信息。

• 数据传输未经优化:
‣ 默认无压缩: 协议本身不强制压缩数据，增大了网络负载。
‣ 序列化开销: 使用 JSON等文本格式比二进制格式体积更大，处理速度更慢。

预备知识

13 / 55

在我们讲解后续思路与方案之前，我们先来了解一下异步编程。

异步编程 14 / 55

异步编程是实现并发的一种主要方式。

我们可以用在餐厅点餐的例子来理解：

• 同步（等待的方式）： 你在柜台点完餐，然后就站在那里一直等到餐做好。中间什

么也做不了。

• 异步（不等待的方式）： 你在柜台点完餐，服务员给你一个震动的取餐器。你可以

回到座位上玩手机、聊天。当取餐器震动时，你再去取餐。

在程序中：

• “点餐”就是发起一个网络请求。

• “取餐器”就是一种通知机制。

• “玩手机”就是程序在等待期间可以去执行的其他代码。

并发与异步的关系 15 / 55

简单来说，它们是“目标”与“手段”的关系。

• 并发是我们的目标：
‣ 我们希望程序能同时处理多个任务，提高效率。

• 异步编程是达成目标的手段之一：
‣ 它是我们编写并发程序的一种具体方法。

好比我们的目标是“同时做好一顿饭（炒菜、煮饭、煲汤）”。

• 多线程方案：
‣ 请三个厨师，每人负责一项。速度快，但“雇佣成本”高，且需要协调。

• 异步方案：
‣ 一位经验丰富的厨师，他先按下电饭煲和汤煲的开关（发起异步操作），然后在等

待的间隙去炒菜。通过合理安排，一个人高效地完成了所有事情。

为什么不选择多线程方案 16 / 55

尽管多线程也能实现并发，但在网络编程中，它常常带来一些挑战：

• 数据竞争与复杂性：
‣ 当多个线程同时尝试修改同一份数据时，很容易出现混乱，导致程序出错。

‣ 就像多个人同时在同一块白板上写字，最终结果可能一团糟。

‣ 为了避免这种混乱，程序员需要使用复杂的“锁”机制来协调，这非常容易出错，

并且难以调试。

• 特定语言的限制：
‣ 像 Python这样的语言，由于其内部机制（全局解释器锁 GIL），即使使用多线

程，也无法真正同时运行多个计算任务，这限制了其在 CPU密集型场景的性能。
‣ 即使是 C/C++这类语言，虽然没有 GIL，但手动管理线程间的同步和数据安全，

也是一个巨大的挑战。

为什么不选择多线程方案 17 / 55

• 逻辑直观性：
‣ 即使是像 Rust这样能保证线程安全的语言，多线程的逻辑也可能不如异步编程

模型（特别是 async/await）那样直观和易于理解，尤其是在处理大量网络 I/

O时。

因此，在许多网络设计场景中，异步编程往往是更简洁、高效且易于维护的选择。

通过有向无环图(DAG)实现通信批次化

19 / 55

我们可以将数据依赖转换成图问题，进而使用拓扑排序来批次化无依赖关系的数据。

例如刚刚的循环发送。我们可以创建一个缓冲区，将数据先填充至缓冲区，然后在一

轮循环结束的时候，统一发送。

接收方同理，创建缓冲区，通过循环解包出对应的数据。

手动批次化示例 20 / 55

1 # 手动批次化发送方代码 Python

2 # items = [item1, item2, item3]

3 # for item in items:

4 # socket_to_peer.send(item)

5

6 buffer = []

7 for item in items:

8 buffer.append(item)

9 socket_to_peer.send(buffer)

批量化流程图表示 21 / 55

CPU 1 CPU 2 CPU 3 I/O 1 ...

批次化的计算与传输

22 / 55

然后是并发化，如果多个步骤可以并行进行，那么拓扑排序也可以将这些步骤一起发

送处理。

例如刚刚的发送给多个参与方的模式。我们便可使用一次并发，在等待确认的时候，

发送其他数据。

并发化示例 23 / 55

1 # peers = [socket_to_alice, socket_to_bob, socket_to_carol] Python

2

3 # 创建一组并发的发送任务

4 tasks = [

5 socket_to_peer.send(data) for peer in peers

6]

7

8 # 同时执行所有发送任务

9 await asyncio.gather(*tasks)

并发流程图表示 24 / 55

CPU 1 I/O 1 CPU 4 ...

CPU 2 I/O 2 ...

CPU 3 I/O 3 ...

异步化的计算与传输

动态 DAG方案 25 / 55

主流的动态 DAG框架是阿里的隐语框架 [1]。

此方案的核心思想是：

• 运行时构建：计算图（DAG）不是预先生成的，而是在程序执行过程中动态构建。

这允许更灵活的编程，例如，计算的流程可以根据秘密计算的中间结果发生改变。

• 通用语言：开发者使用 Python 来编写 MPC逻辑。

• 分布式框架：底层依赖一个强大的分布式执行框架（Ray [2]）来调度和执行图中

的计算任务。

26 / 55

优点：

• 灵活性高，易于上手，可以处理具有复杂、数据依赖控制流的算法。

• 中文社区，有问题回复较及时。

缺点：

• 运行时动态调度和框架自身的开销较大(如传输的是整个 Python对象)，性能不

如静态方案。

• 框架组件多，使用起来复杂度高。

静态 DAG方案 27 / 55

主流的静态 DAG框架是 MP-SPDZ [3]。其工作流程完全不同：

• 编译时构建：开发者使用一种专门为 MPC设计的领域特定语言（DSL）编写协议。

• 提前优化：编译器将 DSL代码转换成一个固定的、静态的计算图，并进行大量优化

（如指令调度、通信批处理）。最终生成高效的字节码。

• 虚拟机解释：项目使用 C++实现了一个虚拟机，在运行时加载并执行这些预先编译

好的字节码。由于所有依赖关系都已确定，执行过程非常高效。

28 / 55

优点：

• 性能极高。由于在编译时就掌握了全部计算信息，可以进行全局优化，运行时开销

非常小。

缺点：

• 灵活性差。计算流程必须在编译前完全确定，很难实现依赖于秘密数据的动态分

支。

• 需要学习相应的 DSL。

选择快速的通信协议

30 / 55

传统方案是使用同步 TCP来实现。但是这个方案因为 TCP的握手和同步阻塞问题，

性能上比较差。

对此，我们有多种优化方案。

TCP长链接 31 / 55

非常简单的一个方式就是使用 TCP长连接。这个方案需要额外维护一个连接列表。可

以解决频繁建立 TCP连接的握手开销。

TCP长链接代码示例 32 / 55

核心思路是实现一个 ConnectionManager，它内部持有一个 HashMap 作为连接池。

当需要通信时，我们向管理器请求一个连接。

• 如果连接已存在，管理器直接返回它。

• 如果不存在，管理器负责建立新连接，存入池中，然后返回。

这样，无论上层逻辑是发送还是接收，都无需关心连接是否已经建立。

1 use std::collections::HashMap; Rust

2 use std::net::{TcpStream, ToSocketAddrs};

3 use std::io::{self, Write};

4

5 struct ConnectionManager {

6 connections: HashMap<String, TcpStream>,

7 }

TCP长链接代码示例 33 / 55

8

9 impl ConnectionManager {

10 // 获取或建立一个新连接

11 // 这个函数体现了“维护链接”：调用者只管要连接，不用管是否已存在

12 fn get_connection<A: ToSocketAddrs + ToString>(

13 &mut self, addr: A

14) -> io::Result<&mut TcpStream> {

15 let addr_string = addr.to_string();

16

17 // .entry().or_insert_with() 是更地道的写法，这里为了清晰而展开

18 if !self.connections.contains_key(&addr_string) {

19 let stream = TcpStream::connect(addr)?;

20 self.connections.insert(addr_string.clone(), stream);

TCP长链接代码示例 34 / 55

21 }

22

23 Ok(self.connections.get_mut(&addr_string).unwrap())

24 }

25 }

序列化：数据的高效编码 35 / 55

序列化是将内存中的数据结构（如对象、结构体）转换为可以存储或传输的格式（如

字节流）的过程。在 MPC中，我们需要在网络间传输大量数据，因此序列化的效率至

关重要。

• 文本格式 (如 JSON):
‣ 优点: 人类可读，易于调试。
‣ 缺点: 体积庞大，解析速度慢，对于性能敏感的 MPC通信是巨大的瓶颈。

• 二进制格式 (如 Protobuf, Bincode):
‣ 优点: 极其紧凑，解析速度飞快，是高性能场景的首选。
‣ 缺点: 人类不可读。

在 Rust生态中，serde 框架配合 bincode 库是实现高效二进制序列化的黄金搭档。

序列化代码示例 (Rust) 36 / 55

通过 serde，我们只需在结构体上添加一个派生宏，就能轻松实现序列化和反序列

化。

1 use serde::{Serialize, Deserialize}; Rust

2

3 // 1. 使用serde的宏来自动实现序列化/反序列化

4 #[derive(Serialize, Deserialize, PartialEq, Debug)]

5 struct MyData {

6 id: u32,

7 payload: String,

8 }

9

10 fn main() {

11 let original = MyData {

序列化代码示例 (Rust) 37 / 55

12 id: 101,

13 payload: "hello".to_string(),

14 };

15

16 // 2. 使用bincode将结构体序列化为字节

17
 let serialized_bytes: Vec<u8> =

bincode::serialize(&original).unwrap();

18 println!("Serialized: {:?}", &serialized_bytes);

19

20 // 3. 从字节反序列化回结构体

21
 let deserialized: MyData =

bincode::deserialize(&serialized_bytes).unwrap();

22 println!("Deserialized: {:?}", &deserialized);

23

序列化代码示例 (Rust) 38 / 55

24 assert_eq!(original, deserialized);

25 }

流式压缩 39 / 55

在序列化之后，我们可以通过一些压缩算法来降低传输的数据量，从而减少网络传输

时间和带宽消耗。流式压缩特别适用于 MPC中需要传输大量中间计算结果的场景。

优点：

• 减少数据量: 直接降低网络传输的数据大小，加快传输速度。

• 降低带宽需求: 对于带宽受限的环境尤其重要。

• 实时性: 流式压缩/解压缩可以在数据传输的同时进行，不会引入额外的显著延迟。

常用算法：

• Zlib/Deflate: 广泛使用的通用压缩算法，兼顾压缩比和速度。

• Snappy: Google开发，以极快的压缩和解压缩速度著称，但压缩比略低于

Zlib，适用于对速度要求更高的场景。

• LZ4: 另一种非常快速的无损压缩算法，解压缩速度尤其快。

流式压缩 40 / 55

在选择压缩算法时，需要根据具体的 MPC协议和网络环境，权衡压缩比、压缩/解压

缩速度以及 CPU开销。

gRPC协议 41 / 55

gRPC 是由 Google 开发的一个现代、高性能的 RPC（远程过程调用）框架，它能

很好地解决我们之前提到的一些通信瓶颈。

• 基于 HTTP/2：
‣ gRPC 使用 HTTP/2 作为其传输协议，天然支持多路复用。这意味着可以在单

个 TCP连接上同时处理多个请求和响应，彻底解决了队头阻塞问题，也实现了长

连接复用。

• 高效的 Protobuf：
‣ 默认使用 Protocol Buffers (Protobuf) 进行序列化。相比于 JSON，

Protobuf 是二进制格式，体积更小、解析更快。

• 支持流式通信：
‣ 除了常规的“请求-响应”模式，gRPC 还原生支持客户端流、服务端流和双向流。

这对于需要连续交换大量数据的 MPC场景非常有用。

QUIC协议 42 / 55

QUIC 是一个更前沿的传输层协议，它被用作 HTTP/3 的基础。它的设计目标是彻

底解决 TCP的固有顽疾。

• 构建于 UDP 之上：
‣ QUIC 抛弃了 TCP，选择在更底层的 UDP 上重新实现了可靠传输、拥塞控制

等功能。

• 解决了真正的队头阻塞：
‣ HTTP/2 在单个 TCP连接上多路复用，但如果一个 TCP数据包丢失，整个连接

上的所有流都必须等待它重传。这是传输层的队头阻塞。

‣ QUIC 将“流”作为一等公民。每个流的数据包被独立处理，一个流的丢包不会阻

塞其他流。

QUIC协议 43 / 55

• 更快的连接建立：
‣ QUIC 将传输层的握手（类似 TCP三次握手）和加密握手（TLS）合并了。对于

已有连接，它甚至可以实现 0-RTT（零往返时间）的连接恢复，速度极快。

协议对比 44 / 55

为了更好地理解不同通信协议的优劣，我们来对比一下它们在 MPC场景下的表现。

特性 传统 TCP/HTTP/1.1 gRPC (HTTP/2 over TCP) QUIC (HTTP/3 over UDP)

传输层 TCP TCP UDP

队头阻塞 应用层和传输层 传输层 (TCP HOLB) 无 (流独立)

连接建立 慢 (TCP 3次握手 + TLS) 慢 (TCP 3次握手 + TLS) 快 (0-RTT/1-RTT)

多路复用 无 有 (应用层) 有 (传输层)

序列化 通常文本 (如 JSON) Protobuf (二进制) 协议无关 (二进制)

性能 较低 中高 高

适用场景 简单请求/响应 微服务/RPC 实时通信/高并发

异步 TCP方案 45 / 55

使用异步的发送可以让我们无须等待 I/O。也就是说，我们在调用 send()/recv()的

时候，线程不会一直阻塞，而是会将 CPU时间片交给其他任务。

异步编程有多种模型，最主流的是 async/await 方案。

async/await 方案的优劣 46 / 55

优点：

• 代码直观: 代码的线性逻辑使其看起来像同步代码，非常易于读写和维护。

• 资源占用低: 基于无栈协程，单个任务内存开销极小，可以轻松创建海量并发，且

上下文切换在用户态完成。

• 统一的错误处理: 可以使用语言内建的错误处理机制（如 Rust的 ?），避免了回

调地狱中的错误处理难题。

缺点：

• 心智负担: 需要理解 Future、执行器等概念，并手动处理 CPU密集型任务（放入

线程池）。

• 函数染色: async 关键字具有传染性，async 函数不能被同步代码直接调用，反

之亦然，割裂了生态。

Rust中的异步实现对比 47 / 55

在 Rust生态中，同时存在 Stackful和 Stackless两种异步实现，代表了不同的

设计哲学。

Stackful (may 框架):

• may 提供了类似 Go Goroutine的体验，每个协程拥有自己的栈。

• 开发者可以像写普通同步代码一样进行编程，网络 IO等操作会被框架自动调度，

对用户透明。

• 同样是“无色”函数，不强制区分同步和异步函数。

Stackless (tokio 框架):

• 这是 Rust官方和社区的主流方案，基于 async/await 语法。

• 编译器将异步代码转化为状态机，内存占用极低。

• 必须遵循 async/await 的语法规则，存在“有色”函数问题，但换来了更高的性能

和更精细的控制。

设计异步化的通信流程

49 / 55

我们目前学习的方案大部分是同步的协议，即协议的数据几乎要依赖于上一步的状态

或结果。 Damgård [4] 提出一个全异步的协议设计概念，即协议的正确性不依赖

与消息是否在规定时间内到达。 同时这篇文章提出 VIFF框架（现已 archive，且

继任为 MP-SPDZ）

https://github.com/mgeisler/viff

50 / 55

近年来，还提出了一些新的方案。如 hbMPC[5] ，还有 Dumbo-MPC[6]。

总结

52 / 55

综合前面讨论的通信瓶颈、异步编程思想以及各种优化协议，我们可以勾勒出 MPC中

异步化通信流程的设计思路：

• 核心思想：非阻塞与并发
‣ 充分利用异步编程模型，确保通信操作不会阻塞主计算线程，从而提高 CPU利用

率。

• 通信调度：DAG驱动
‣ 将通信任务抽象为有向无环图（DAG），通过拓扑排序实现通信的批处理和并发执

行，最大限度地减少等待时间。

• 协议选择：高效可靠
‣ 优先选用基于 HTTP/2 (如 gRPC) 或 QUIC (如 HTTP/3) 的协议，利用其

多路复用、快速握手和高效序列化等特性。

• 连接管理：长连接与复用
‣ 维护连接池，实现长连接的复用，避免频繁建立和关闭连接的开销。

References

[1] J. Ma et al., “SecretFlow-SPU: A Performant and User-

Friendly Framework for Privacy-Preserving Machine Learn

ing,” in 2023 USENIX Annual Technical Conference (USENIX ATC

23), Boston, MA: USENIX Association, July 2023, pp. 17–33.

[Online]. Available: https://www.usenix.org/conference/

atc23/presentation/ma

[2] P. Moritz et al., “Ray: A Distributed Framework for Emerging

AI Applications.” [Online]. Available: https://arxiv.org/

abs/1712.05889

[3] M. Keller, “MP-SPDZ: A Versatile Framework for Multi-

Party Computation,” in Proceedings of the 2020 ACM SIGSAC

https://www.usenix.org/conference/atc23/presentation/ma
https://www.usenix.org/conference/atc23/presentation/ma
https://arxiv.org/abs/1712.05889
https://arxiv.org/abs/1712.05889

Conference on Computer and Communications Security, 2020.

doi: 10.1145/3372297.3417872.

[4] I. Damgård, M. Geisler, M. Krøigaard, and J. B. Nielsen,

“Asynchronous Multiparty Computation: Theory and Implemen

tation,” in Public Key Cryptography – PKC 2009, S. Jarecki

and G. Tsudik, Eds., Berlin, Heidelberg: Springer Berlin

Heidelberg, 2009, pp. 160–179.

[5] D. Lu et al., “HoneyBadgerMPC and AsynchroMix: Practical

AsynchronousMPC and its Application to Anonymous Communica

tion.” [Online]. Available: https://eprint.iacr.org/2019/

883

[6] Y. Su, Y. Lu, J. Li, Y. Wang, C. Dong, and Q. Tang,

“Dumbo-MPC: Efficient Fully Asynchronous MPC with Optimal

https://doi.org/10.1145/3372297.3417872
https://eprint.iacr.org/2019/883
https://eprint.iacr.org/2019/883

Resilience.” [Online]. Available: https://eprint.iacr.org/

2024/1705

https://eprint.iacr.org/2024/1705
https://eprint.iacr.org/2024/1705

	 MPC通信常见问题
	 预备知识
	 通过有向无环图(DAG)实现通信批次化
	 选择快速的通信协议
	 设计异步化的通信流程
	 总结
	 References

