feat: 实现明文版hnsw算法和最优参数

This commit is contained in:
2025-07-24 18:45:50 +08:00
parent bc92fc704f
commit 2a376b920b
3 changed files with 651 additions and 43 deletions

View File

@@ -1,52 +1,303 @@
#!/usr/bin/env python3
"""
HNSW参数优化测试脚本 - 控制变量法
针对100个10维向量单次查询的场景进行参数调优
每个配置运行100次记录≥90%准确率的成功率
"""
import subprocess
import json
from collections import Counter
from pathlib import Path
# 正确答案
CORRECT_ANSWER = [93, 94, 90, 27, 87, 50, 47, 40, 78, 28]
def load_answers(filepath):
with open(filepath, "r") as f:
data = json.load(f)
return data["answer"]
def calculate_accuracy(result, correct):
"""计算准确率:匹配元素数量 / 总元素数量"""
matches = len(set(result) & set(correct))
return matches / len(correct) * 100
def run_plain_binary():
result = subprocess.run(
["cargo", "r", "-r", "--bin", "plain"], capture_output=True, text=True, cwd="."
)
if result.returncode == 0:
# The program outputs the same results as answer1.jsonl
return load_answers("dataset/answer1.jsonl")
return None
def run_hnsw_test(max_connections, max_level, level_prob, ef_upper, ef_bottom):
"""运行HNSW测试并返回结果"""
cmd = [
"cargo",
"run",
"--bin",
"plain",
"--",
"--max-connections",
str(max_connections),
"--max-level",
str(max_level),
"--level-prob",
str(level_prob),
"--ef-upper",
str(ef_upper),
"--ef-bottom",
str(ef_bottom),
"--predictions",
"./test_output.jsonl",
]
try:
result = subprocess.run(cmd, capture_output=True, text=True, timeout=30)
if result.returncode != 0:
return None
with open("./test_output.jsonl", "r") as f:
output = json.load(f)
return output["answer"]
except Exception as e:
return None
def compare_answers(predictions, ground_truth):
if not predictions or len(predictions) != len(ground_truth):
return 0
return sum(1 for p, gt in zip(predictions, ground_truth) if p == gt)
def test_config_stability(config, runs=100):
"""测试配置的稳定性运行100次统计≥90%准确率的次数"""
success_count = 0
accuracies = []
print(f" 测试中... ", end="", flush=True)
for i in range(runs):
if i % 20 == 0 and i > 0:
print(f"{i}/100 ", end="", flush=True)
result = run_hnsw_test(
config["max_connections"],
config["max_level"],
config["level_prob"],
config["ef_upper"],
config["ef_bottom"],
)
if result is not None:
accuracy = calculate_accuracy(result, CORRECT_ANSWER)
accuracies.append(accuracy)
if accuracy >= 90:
success_count += 1
success_rate = success_count / len(accuracies) * 100 if accuracies else 0
avg_accuracy = sum(accuracies) / len(accuracies) if accuracies else 0
print(f"完成!")
return success_rate, avg_accuracy, len(accuracies)
def main():
ground_truth = load_answers("dataset/answer.jsonl")
"""主测试函数 - 测试最优参数组合"""
print("🚀 HNSW最优参数组合测试")
print(f"🎯 正确答案: {CORRECT_ANSWER}")
print("📊 测试最优参数组合运行100次记录≥90%准确率的成功率")
print()
num_runs = 100
accuracies = []
# 最优参数组合
optimal_config = {
"max_connections": 8,
"max_level": 3,
"level_prob": 0.6,
"ef_upper": 1,
"ef_bottom": 10,
}
for i in range(num_runs):
predictions = run_plain_binary()
if predictions is not None:
accuracy = compare_answers(predictions, ground_truth)
accuracies.append(accuracy)
print(f"\nResults ({len(accuracies)} runs):")
print("=" * 80)
print("🏆 测试最优参数组合")
print("=" * 80)
print(
f"Min: {min(accuracies)}, Max: {max(accuracies)}, Mean: {sum(accuracies)/len(accuracies):.2f}"
f"参数配置: M={optimal_config['max_connections']}, L={optimal_config['max_level']}, "
+ f"P={optimal_config['level_prob']}, ef_upper={optimal_config['ef_upper']}, "
+ f"ef_bottom={optimal_config['ef_bottom']}"
)
print()
print("最优组合 ", end=" ")
success_rate, avg_acc, total_runs = test_config_stability(optimal_config)
status = "✅ PASS" if success_rate >= 50 else "❌ FAIL"
print(
f"成功率: {success_rate:5.1f}% ({total_runs}次) 平均准确率: {avg_acc:5.1f}% {status}"
)
counter = Counter(accuracies)
print("Distribution:")
for correct_count in sorted(counter.keys()):
print(f" {correct_count} correct: {counter[correct_count]} times")
print()
print("=" * 80)
print("📈 测试结果分析")
print("=" * 80)
if success_rate >= 50:
print("✅ 最优参数组合测试通过!")
print(f" - 成功率: {success_rate:.1f}% (≥50%)")
print(f" - 平均准确率: {avg_acc:.1f}%")
else:
print("❌ 最优参数组合未达到50%成功率")
print(f" - 成功率: {success_rate:.1f}% (<50%)")
print(f" - 平均准确率: {avg_acc:.1f}%")
return
# 以下是控制变量测试代码 - 已注释掉
"""
# 控制变量测试 - 每次只改变一个参数
test_results = []
print("=" * 80)
print("1测试 max_connections (M) 参数影响")
print("=" * 80)
for m in [4, 8, 12, 16, 20]:
config = base_config.copy()
config["max_connections"] = m
config_name = f"M={m}"
print(f"{config_name:<15}", end=" ")
success_rate, avg_acc, total_runs = test_config_stability(config)
status = "✅ PASS" if success_rate >= 50 else "❌ FAIL"
print(
f"成功率: {success_rate:5.1f}% ({total_runs}次) 平均准确率: {avg_acc:5.1f}% {status}"
)
test_results.append(
{
"param": "max_connections",
"value": m,
"config": config,
"success_rate": success_rate,
"avg_accuracy": avg_acc,
"pass": success_rate >= 50,
}
)
print()
print("=" * 80)
print("2测试 max_level (L) 参数影响")
print("=" * 80)
for l in [3, 4, 5, 6, 7]:
config = base_config.copy()
config["max_level"] = l
config_name = f"L={l}"
print(f"{config_name:<15}", end=" ")
success_rate, avg_acc, total_runs = test_config_stability(config)
status = "✅ PASS" if success_rate >= 50 else "❌ FAIL"
print(
f"成功率: {success_rate:5.1f}% ({total_runs}次) 平均准确率: {avg_acc:5.1f}% {status}"
)
test_results.append(
{
"param": "max_level",
"value": l,
"config": config,
"success_rate": success_rate,
"avg_accuracy": avg_acc,
"pass": success_rate >= 50,
}
)
print()
print("=" * 80)
print("3测试 level_prob (P) 参数影响")
print("=" * 80)
for p in [0.2, 0.3, 0.4, 0.5, 0.6]:
config = base_config.copy()
config["level_prob"] = p
config_name = f"P={p}"
print(f"{config_name:<15}", end=" ")
success_rate, avg_acc, total_runs = test_config_stability(config)
status = "✅ PASS" if success_rate >= 50 else "❌ FAIL"
print(
f"成功率: {success_rate:5.1f}% ({total_runs}次) 平均准确率: {avg_acc:5.1f}% {status}"
)
test_results.append(
{
"param": "level_prob",
"value": p,
"config": config,
"success_rate": success_rate,
"avg_accuracy": avg_acc,
"pass": success_rate >= 50,
}
)
print()
print("=" * 80)
print("4⃣ 测试 ef_bottom 参数影响")
print("=" * 80)
for ef in [10, 16, 25, 40, 60]:
config = base_config.copy()
config["ef_bottom"] = ef
config_name = f"ef_b={ef}"
print(f"{config_name:<15}", end=" ")
success_rate, avg_acc, total_runs = test_config_stability(config)
status = "✅ PASS" if success_rate >= 50 else "❌ FAIL"
print(
f"成功率: {success_rate:5.1f}% ({total_runs}次) 平均准确率: {avg_acc:5.1f}% {status}"
)
test_results.append(
{
"param": "ef_bottom",
"value": ef,
"config": config,
"success_rate": success_rate,
"avg_accuracy": avg_acc,
"pass": success_rate >= 50,
}
)
# 总结报告
print()
print("=" * 80)
print("📈 测试总结")
print("=" * 80)
passed_configs = [r for r in test_results if r["pass"]]
print(f"总测试配置数: {len(test_results)}")
print(
f"成功率≥50%的配置: {len(passed_configs)} ({len(passed_configs)/len(test_results)*100:.1f}%)"
)
print()
if passed_configs:
print("🏆 成功率≥50%的参数配置:")
for result in passed_configs:
print(
f" {result['param']}={result['value']}: 成功率 {result['success_rate']:.1f}%, 平均准确率 {result['avg_accuracy']:.1f}%"
)
# 找出每个参数的最佳值
print()
print("🎯 各参数最佳值推荐:")
for param_name in ["max_connections", "max_level", "level_prob", "ef_bottom"]:
param_results = [r for r in test_results if r["param"] == param_name]
best_result = max(param_results, key=lambda x: x["success_rate"])
print(
f" {param_name}: {best_result['value']} (成功率: {best_result['success_rate']:.1f}%)"
)
else:
print("❌ 没有配置的成功率达到50%")
print("📊 按成功率排序的前5个配置:")
top_configs = sorted(
test_results, key=lambda x: x["success_rate"], reverse=True
)[:5]
for i, result in enumerate(top_configs, 1):
print(
f" {i}. {result['param']}={result['value']}: 成功率 {result['success_rate']:.1f}%"
)
# 清理临时文件
Path("./test_output.jsonl").unlink(missing_ok=True)
"""
if __name__ == "__main__":