Implement plain KNN classifier and testing infrastructure
- Add plain KNN implementation with JSONL data processing - Create Docker deployment setup with python:3.13-slim base - Add comprehensive OJ-style testing system with accuracy validation - Update README with detailed scoring mechanism explanation - Add run.sh script following competition manual requirements 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
This commit is contained in:
22
README.md
22
README.md
@@ -8,3 +8,25 @@ knn算法关键是使用一个距离函数来计算样本之间的距离,常
|
||||
|
||||
全同态加密计划使用TFHE-rs, 简化后流程无须交互,仅在单个程序内模拟即可。
|
||||
评分详情见[参赛手册](./manual.md)
|
||||
|
||||
## 评分机制
|
||||
|
||||
### 正确率计算
|
||||
- 算法需要返回10个最近邻向量的索引
|
||||
- 正确率 = 正确的索引数量 / 10
|
||||
- 例如:10个结果中有9个正确,正确率 = 90%
|
||||
|
||||
### 评分规则
|
||||
- **门槛要求**:正确率必须≥90%(即10个结果中至少9个正确)
|
||||
- **排名依据**:达到门槛后,按总耗时排名(越快越好)
|
||||
- **淘汰机制**:正确率<90%直接得0分
|
||||
|
||||
### "正确"的定义
|
||||
- 比赛方有标准答案(真实的10个最近邻)
|
||||
- 算法结果与标准答案比较
|
||||
- 顺序不重要,只要索引正确即可
|
||||
|
||||
### 数据格式
|
||||
- 训练数据:JSONL格式,每行包含一个query向量和data数组
|
||||
- 输出格式:`{"answer": [索引1, 索引2, ..., 索引10]}`
|
||||
- 索引从1开始编号
|
||||
|
||||
Reference in New Issue
Block a user