- Add plain KNN implementation with JSONL data processing - Create Docker deployment setup with python:3.13-slim base - Add comprehensive OJ-style testing system with accuracy validation - Update README with detailed scoring mechanism explanation - Add run.sh script following competition manual requirements 🤖 Generated with [Claude Code](https://claude.ai/code) Co-Authored-By: Claude <noreply@anthropic.com>
23 lines
637 B
Docker
23 lines
637 B
Docker
FROM python:3.13-slim
|
|
|
|
# Create necessary directories
|
|
RUN mkdir -p /home/admin/predict \
|
|
/home/admin/data \
|
|
/home/admin/workspace/job/logs \
|
|
/home/admin/workspace/job/output/predictions \
|
|
/home/admin/workspace/job/input
|
|
|
|
# Copy files to required locations according to manual
|
|
COPY run.sh /home/admin/predict/run.sh
|
|
RUN chmod 777 /home/admin/predict/run.sh
|
|
|
|
# Copy the compiled binary as 'test' executable
|
|
COPY target/release/hfe_knn /home/admin/predict/test
|
|
RUN chmod +x /home/admin/predict/test
|
|
|
|
# Copy training data
|
|
COPY dataset/train.jsonl /home/admin/data/data.jsonl
|
|
|
|
# Set default command
|
|
CMD ["/home/admin/predict/run.sh"]
|