style: format code

This commit is contained in:
2024-01-08 05:11:53 +08:00
parent f8db961166
commit 8d7133eb5a

View File

@@ -1,11 +1,12 @@
#include <stdio.h>
#include <string.h>
#include <stdint.h>
#include <math.h>
#include <time.h>
#include <stdbool.h>
#include <stdlib.h>
#include <ctype.h>
#include <math.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
// #include <openssl/evp.h>
#define SUCCESS 0
@@ -27,7 +28,7 @@
#define MAX_STATES 100
#define INVALID_HANDLE -1
// for Get_entropy_input
// for get_entropy_input
#define reseed_interval_in_counter pow(2, 10) // (次)
#define reseed_interval_in_time 60 //(秒)
@@ -38,26 +39,25 @@
#define HASH_SIZE 32
/*----------------熵源的相关定义与函数----------------*/
typedef struct
{
typedef struct {
uint8_t data[BLOCK_SIZE];
uint32_t datalen;
uint64_t bitlen;
uint32_t state[8];
} SHA256_CTX;
void sha256_transform(SHA256_CTX *ctx, const uint8_t data[])
{
void sha256_transform(SHA256_CTX *ctx, const uint8_t data[]) {
uint32_t a, b, c, d, e, f, g, h, i, j, t1, t2, m[64];
for (i = 0, j = 0; i < 16; ++i, j += 4)
{
m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) | (data[j + 3]);
for (i = 0, j = 0; i < 16; ++i, j += 4) {
m[i] = (data[j] << 24) | (data[j + 1] << 16) | (data[j + 2] << 8) |
(data[j + 3]);
}
for (; i < 64; ++i)
{
m[i] = m[i - 16] + m[i - 7] + (m[i - 15] >> 7) + (m[i - 15] << 25) ^ (m[i - 15] >> 18) + (m[i - 15] << 14) ^ (m[i - 15] >> 3) + (m[i - 15] << 13);
for (; i < 64; ++i) {
m[i] = m[i - 16] + m[i - 7] + (m[i - 15] >> 7) + (m[i - 15] << 25) ^
(m[i - 15] >> 18) + (m[i - 15] << 14) ^
(m[i - 15] >> 3) + (m[i - 15] << 13);
}
a = ctx->state[0];
@@ -69,8 +69,7 @@ void sha256_transform(SHA256_CTX *ctx, const uint8_t data[])
g = ctx->state[6];
h = ctx->state[7];
for (i = 0; i < 64; ++i)
{
for (i = 0; i < 64; ++i) {
t1 = h + (e >> 6) + ((e & f) ^ (~e & g)) + 0x428a2f98 + m[i];
t2 = (a >> 2) + ((a & b) ^ (a & c) ^ (b & c)) + 0x5a827999;
@@ -94,8 +93,7 @@ void sha256_transform(SHA256_CTX *ctx, const uint8_t data[])
ctx->state[7] += h;
}
void sha256_init(SHA256_CTX *ctx)
{
void sha256_init(SHA256_CTX *ctx) {
ctx->datalen = 0;
ctx->bitlen = 0;
ctx->state[0] = 0x6a09e667;
@@ -108,16 +106,13 @@ void sha256_init(SHA256_CTX *ctx)
ctx->state[7] = 0x5be0cd19;
}
void sha256_update(SHA256_CTX *ctx, const uint8_t data[], size_t len)
{
void sha256_update(SHA256_CTX *ctx, const uint8_t data[], size_t len) {
uint32_t i;
for (i = 0; i < len; ++i)
{
for (i = 0; i < len; ++i) {
ctx->data[ctx->datalen] = data[i];
ctx->datalen++;
if (ctx->datalen == BLOCK_SIZE)
{
if (ctx->datalen == BLOCK_SIZE) {
sha256_transform(ctx, ctx->data);
ctx->bitlen += BLOCK_SIZE * 8;
ctx->datalen = 0;
@@ -125,21 +120,17 @@ void sha256_update(SHA256_CTX *ctx, const uint8_t data[], size_t len)
}
}
void sha256_final(SHA256_CTX *ctx, uint8_t hash[])
{
void sha256_final(SHA256_CTX *ctx, uint8_t hash[]) {
uint32_t i;
i = ctx->datalen;
// Pad whatever data is left in the buffer
if (ctx->datalen < 56)
{
if (ctx->datalen < 56) {
ctx->data[i++] = 0x80;
while (i < 56)
ctx->data[i++] = 0x00;
}
else
{
} else {
ctx->data[i++] = 0x80;
while (i < BLOCK_SIZE)
ctx->data[i++] = 0x00;
@@ -160,10 +151,10 @@ void sha256_final(SHA256_CTX *ctx, uint8_t hash[])
sha256_transform(ctx, ctx->data);
// Since this implementation uses little endian byte ordering and SHA uses big endian,
// reverse all the bytes when copying the final state to the output hash.
for (i = 0; i < 4; ++i)
{
// Since this implementation uses little endian byte ordering and SHA uses big
// endian, reverse all the bytes when copying the final state to the output
// hash.
for (i = 0; i < 4; ++i) {
hash[i] = (ctx->state[0] >> (24 - i * 8)) & 0x000000ff;
hash[i + 4] = (ctx->state[1] >> (24 - i * 8)) & 0x000000ff;
hash[i + 8] = (ctx->state[2] >> (24 - i * 8)) & 0x000000ff;
@@ -175,17 +166,14 @@ void sha256_final(SHA256_CTX *ctx, uint8_t hash[])
}
}
void get_entropy_source(uint8_t *entropy_source)
{
void get_entropy_source(uint8_t *entropy_source) {
// Simulate an entropy source by generating random data
for (int i = 0; i < min_entropy_input_length; i++)
{
for (int i = 0; i < min_entropy_input_length; i++) {
entropy_source[i] = rand() % 256;
}
}
void Get_entropy_input(const uint8_t *data, size_t len, uint8_t *entropy)
{
void get_entropy_input(const uint8_t *data, size_t len, uint8_t *entropy) {
SHA256_CTX ctx;
uint8_t hash[HASH_SIZE];
@@ -202,28 +190,23 @@ void Get_entropy_input(const uint8_t *data, size_t len, uint8_t *entropy)
#define RANDOM_BITS_NUMBER 100
#define RANDOM_BITS_SIZE 128
int test_randomness(const unsigned char *bits)
{
int test_randomness(const unsigned char *bits) {
// Test the randomness of the given bits using the chi-squared test
int ones = 0, zeros = 0;
for (int i = 0; i < RANDOM_BITS_SIZE / 8; i++)
{
for (int i = 0; i < RANDOM_BITS_SIZE / 8; i++) {
unsigned char byte = bits[i];
for (int j = 0; j < 8; j++)
{
if ((byte >> j) & 0x01)
{
for (int j = 0; j < 8; j++) {
if ((byte >> j) & 0x01) {
ones++;
}
else
{
} else {
zeros++;
}
}
}
double expected_ones = RANDOM_BITS_SIZE / 2.0;
double expected_zeros = RANDOM_BITS_SIZE / 2.0;
double chi_squared = (ones - expected_ones) * (ones - expected_ones) / expected_ones +
double chi_squared =
(ones - expected_ones) * (ones - expected_ones) / expected_ones +
(zeros - expected_zeros) * (zeros - expected_zeros) / expected_zeros;
return chi_squared > 3.84;
}
@@ -259,14 +242,12 @@ int test_randomness(const unsigned char *bits)
static const char sigma[] = "expand 32-byte k";
static const char tau[] = "expand 16-byte k";
void ChaCha20_block(uint32_t state[16], uint32_t output[16])
{
void ChaCha20_block(uint32_t state[16], uint32_t output[16]) {
int i;
memcpy(output, state, sizeof(uint32_t) * 16);
// 20轮操作每轮包括4个quarterrounds所以共80个quarterrounds
for (i = 0; i < 10; ++i)
{
for (i = 0; i < 10; ++i) {
// 双轮
QUARTERROUND(output, 0, 4, 8, 12)
QUARTERROUND(output, 1, 5, 9, 13)
@@ -278,14 +259,13 @@ void ChaCha20_block(uint32_t state[16], uint32_t output[16])
QUARTERROUND(output, 3, 4, 9, 14)
}
for (i = 0; i < 16; ++i)
{
for (i = 0; i < 16; ++i) {
output[i] += state[i];
}
}
void ChaCha20_setup(uint32_t state[16], const uint8_t key[32], const uint8_t nonce[12], uint8_t counter[4])
{
void ChaCha20_setup(uint32_t state[16], const uint8_t key[32],
const uint8_t nonce[12], uint8_t counter[4]) {
const char *constants = (key[16] != 0 || key[24] != 0) ? sigma : tau;
state[4] = U8TO32_LITTLE(key + 0);
@@ -312,28 +292,24 @@ void ChaCha20_setup(uint32_t state[16], const uint8_t key[32], const uint8_t non
state[15] = U8TO32_LITTLE(nonce + 8);
}
void ChaCha20_encrypt(uint32_t state[16], const uint8_t *in, uint8_t *out, size_t length, bool increment_flag)
{
void ChaCha20_encrypt(uint32_t state[16], const uint8_t *in, uint8_t *out,
size_t length, bool increment_flag) {
uint32_t keystream[16];
uint8_t *keystream_bytes = (uint8_t *)keystream; // 为XOR操作重新解释keystream
size_t remaining = length;
size_t i;
while (remaining > 0)
{
while (remaining > 0) {
size_t bytes_to_use = remaining < 64 ? remaining : 64; // 每个block 64 bytes
ChaCha20_block(state, keystream);
for (i = 0; i < bytes_to_use; ++i)
{
for (i = 0; i < bytes_to_use; ++i) {
out[i] = in[i] ^ keystream_bytes[i];
}
if (increment_flag)
{
if (increment_flag) {
state[12] += 1; // 增加计数器
if (state[12] == 0)
{
if (state[12] == 0) {
state[13] += 1; // 处理计数器溢出
}
}
@@ -347,8 +323,7 @@ void ChaCha20_encrypt(uint32_t state[16], const uint8_t *in, uint8_t *out, size_
/*----------------------------------------------------*/
// 定义ChaCha20_DRBG的内部状态
typedef struct
{
typedef struct {
uint8_t Key[KEYLEN]; // 用于ChaCha20的密钥
uint8_t V[COUNTERLEN]; // 用于ChaCha20的计数器
int reseed_counter; // 重播种计数值
@@ -367,35 +342,47 @@ size_t array_length;
size_t additional_input_length;
// 主要函数
int ChaCha20_DRBG_Instantiate_function(uint8_t *personalization_string, char *state);
char *ChaCha20_DRBG_Reseed_function(int state_handle, uint8_t *additional_input);
void ChaCha20_DRBG_Update(const uint8_t *provided_data, uint8_t *V, uint8_t *Key);
char *ChaCha20_DRBG_Generate_function(int state_handle, int requested_no_of_bits, uint8_t *additional_input, uint8_t **returned_bits);
int ChaCha20_DRBG_Instantiate_function(uint8_t *personalization_string,
char *state);
char *ChaCha20_DRBG_Reseed_function(int state_handle,
uint8_t *additional_input);
void ChaCha20_DRBG_Update(const uint8_t *provided_data, uint8_t *V,
uint8_t *Key);
char *ChaCha20_DRBG_Generate_function(int state_handle,
int requested_no_of_bits,
uint8_t *additional_input,
uint8_t **returned_bits);
// 算法函数
void ChaCha20_DRBG_Instantiate_algorithm(uint8_t *entropy_input, int nonce, uint8_t *personalization_string, uint8_t *V, uint8_t *Key, int *reseed_counter, int *reseed_time);
void ChaCha20_DRBG_Reseed_algorithm(uint8_t *V, uint8_t *Key, int *reseed_counter, int *reseed_time, uint8_t *entropy_input, uint8_t *additional_input);
char *ChaCha20_DRBG_Generate_algorithm(uint8_t *V, uint8_t *Key, int *reseed_counter, int requested_number_of_bits, uint8_t *additional_input, uint8_t **returned_bits);
void ChaCha20_DRBG_Instantiate_algorithm(uint8_t *entropy_input, int nonce,
uint8_t *personalization_string,
uint8_t *V, uint8_t *Key,
int *reseed_counter, int *reseed_time);
void ChaCha20_DRBG_Reseed_algorithm(uint8_t *V, uint8_t *Key,
int *reseed_counter, int *reseed_time,
uint8_t *entropy_input,
uint8_t *additional_input);
char *ChaCha20_DRBG_Generate_algorithm(uint8_t *V, uint8_t *Key,
int *reseed_counter,
int requested_number_of_bits,
uint8_t *additional_input,
uint8_t **returned_bits);
// 派生函数
uint8_t *ChaCha20_df(uint8_t *V, uint8_t *input_string, size_t no_of_bits_to_return);
uint8_t *ChaCha20_df(uint8_t *V, uint8_t *input_string,
size_t no_of_bits_to_return);
// 初始化所有状态为空闲
void initialize_states()
{
for (int i = 0; i < MAX_STATES; i++)
{
void initialize_states() {
for (int i = 0; i < MAX_STATES; i++) {
drbg_states[i].used = false;
}
}
// 查找并返回一个空闲的状态句柄。如果没有可用的空间则返回INVALID_HANDLE
int Find_state_space()
{
for (int i = 0; i < MAX_STATES; i++)
{
if (!drbg_states[i].used)
{
int Find_state_space() {
for (int i = 0; i < MAX_STATES; i++) {
if (!drbg_states[i].used) {
drbg_states[i].used = true; // 标记为已使用
return i; // 返回句柄/索引
}
@@ -403,41 +390,38 @@ int Find_state_space()
return INVALID_HANDLE; // 所有的状态都在使用中
}
void increment_nonce(uint8_t *nonce)
{
void increment_nonce(uint8_t *nonce) {
int i = 0;
for (i; i < NONCELEN; i++)
{
for (i; i < NONCELEN; i++) {
nonce[i]++;
if (nonce[i] != 0)
{ // 检查是否有溢出
if (nonce[i] != 0) { // 检查是否有溢出
break; // 如果没有溢出,则不需要进位
}
}
}
int ChaCha20_DRBG_Instantiate_function(uint8_t *personalization_string, char *status)
{
if (strlen((char *)personalization_string) > MAX_PERSONALIZATION_STRING_LEN)
{
int ChaCha20_DRBG_Instantiate_function(uint8_t *personalization_string,
char *status) {
if (strlen((char *)personalization_string) > MAX_PERSONALIZATION_STRING_LEN) {
strcpy(status, "Personalization_string too long");
return ERROR;
}
uint8_t entropy_input[min_entropy_input_length];
get_entropy_source(entropy_source);
Get_entropy_input(entropy_source, min_entropy_input_length, entropy_input);
get_entropy_input(entropy_source, min_entropy_input_length, entropy_input);
instantiation_nonce += 1;
increment_nonce(chacha_nonce);
uint8_t V[COUNTERLEN], Key[KEYLEN];
int reseed_counter, reseed_time;
ChaCha20_DRBG_Instantiate_algorithm(entropy_input, instantiation_nonce, personalization_string, V, Key, &reseed_counter, &reseed_time);
ChaCha20_DRBG_Instantiate_algorithm(entropy_input, instantiation_nonce,
personalization_string, V, Key,
&reseed_counter, &reseed_time);
int state_handle = Find_state_space();
if (state_handle == ERROR)
{
if (state_handle == ERROR) {
strcpy(status, "Failed to find state space");
return ERROR;
}
@@ -452,11 +436,10 @@ int ChaCha20_DRBG_Instantiate_function(uint8_t *personalization_string, char *st
return state_handle;
}
char *ChaCha20_DRBG_Reseed_function(int state_handle, uint8_t *additional_input)
{
char *ChaCha20_DRBG_Reseed_function(int state_handle,
uint8_t *additional_input) {
// Check for the validity of state_handle.
if (!drbg_states[state_handle].used)
{
if (!drbg_states[state_handle].used) {
return "State not available for the indicated state_handle";
}
@@ -465,18 +448,18 @@ char *ChaCha20_DRBG_Reseed_function(int state_handle, uint8_t *additional_input)
uint8_t *Key = drbg_states[state_handle].Key;
// Check length of additional_input
if (additional_input_length > MAX_PERSONALIZATION_STRING_LEN)
{
if (additional_input_length > MAX_PERSONALIZATION_STRING_LEN) {
return "additional_input too long";
}
uint8_t entropy_input[min_entropy_input_length];
get_entropy_source(entropy_source);
Get_entropy_input(entropy_source, min_entropy_input_length, entropy_input);
get_entropy_input(entropy_source, min_entropy_input_length, entropy_input);
// Invoke the reseed algorithm.
int reseed_counter, reseed_time;
ChaCha20_DRBG_Reseed_algorithm(V, Key, &reseed_counter, &reseed_time, entropy_input, additional_input);
ChaCha20_DRBG_Reseed_algorithm(V, Key, &reseed_counter, &reseed_time,
entropy_input, additional_input);
// Save the internal state.
memcpy(drbg_states[state_handle].V, V, OUTLEN);
@@ -487,8 +470,8 @@ char *ChaCha20_DRBG_Reseed_function(int state_handle, uint8_t *additional_input)
return "Success";
}
void ChaCha20_DRBG_Update(const uint8_t *provided_data, uint8_t *Key, uint8_t *V)
{
void ChaCha20_DRBG_Update(const uint8_t *provided_data, uint8_t *Key,
uint8_t *V) {
uint8_t temp[SEEDLEN] = {0};
// uint32_t V_uint32;
int i;
@@ -498,8 +481,7 @@ void ChaCha20_DRBG_Update(const uint8_t *provided_data, uint8_t *Key, uint8_t *V
ChaCha20_encrypt(chacha_state, V, temp, SEEDLEN, true);
// XOR provided_data with the leftmost part of temp
for (i = 0; i < SEEDLEN; ++i)
{
for (i = 0; i < SEEDLEN; ++i) {
temp[i] ^= provided_data[i];
}
@@ -508,16 +490,17 @@ void ChaCha20_DRBG_Update(const uint8_t *provided_data, uint8_t *Key, uint8_t *V
memcpy(V, temp + KEYLEN, COUNTERLEN);
}
char *ChaCha20_DRBG_Generate_function(int state_handle, int requested_no_of_bits, uint8_t *additional_input, uint8_t **returned_bits)
{
char *ChaCha20_DRBG_Generate_function(int state_handle,
int requested_no_of_bits,
uint8_t *additional_input,
uint8_t **returned_bits) {
uint8_t *V;
uint8_t *Key;
int reseed_counter, reseed_time;
char *status;
// Check the validity of state_handle
if (!drbg_states[state_handle].V || !drbg_states[state_handle].Key)
{
if (!drbg_states[state_handle].V || !drbg_states[state_handle].Key) {
return "State not available for the indicated state_handle";
}
@@ -528,41 +511,37 @@ char *ChaCha20_DRBG_Generate_function(int state_handle, int requested_no_of_bits
reseed_time = drbg_states[state_handle].reseed_time;
// Check the rest of the input parameters
if (requested_no_of_bits > 4000)
{
if (requested_no_of_bits > 4000) {
return "Too many bits requested";
}
if ((additional_input_length) > MAX_PERSONALIZATION_STRING_LEN)
{
if ((additional_input_length) > MAX_PERSONALIZATION_STRING_LEN) {
return "additional_input too long";
}
time_t timep;
int now_time = time(&timep);
// Check for reseeding
if (reseed_counter > reseed_interval_in_counter || (now_time - reseed_time) > reseed_interval_in_time)
{
if (reseed_counter > reseed_interval_in_counter ||
(now_time - reseed_time) > reseed_interval_in_time) {
status = ChaCha20_DRBG_Reseed_function(state_handle, additional_input);
if (strcmp(status, "Success") == 0)
{
if (strcmp(status, "Success") == 0) {
V = drbg_states[state_handle].V;
Key = drbg_states[state_handle].Key;
reseed_counter = drbg_states[state_handle].reseed_counter;
reseed_time = drbg_states[state_handle].reseed_time;
additional_input = NULL;
additional_input_length = 0;
}
else
{
} else {
return status;
}
}
// Execute the algorithm to generate pseudorandom bits
status = ChaCha20_DRBG_Generate_algorithm(V, Key, &reseed_counter, requested_no_of_bits, additional_input, returned_bits);
if (strcmp(status, "Success") != 0)
{
status = ChaCha20_DRBG_Generate_algorithm(V, Key, &reseed_counter,
requested_no_of_bits,
additional_input, returned_bits);
if (strcmp(status, "Success") != 0) {
return "Error in CTR_ChaCha20_DRBG_Generate_algorithm"; // Safety check
}
@@ -574,11 +553,15 @@ char *ChaCha20_DRBG_Generate_function(int state_handle, int requested_no_of_bits
return "Success";
}
void ChaCha20_DRBG_Instantiate_algorithm(uint8_t *entropy_input, int nonce, uint8_t *personalization_string, uint8_t *V, uint8_t *Key, int *reseed_counter, int *reseed_time)
{
void ChaCha20_DRBG_Instantiate_algorithm(uint8_t *entropy_input, int nonce,
uint8_t *personalization_string,
uint8_t *V, uint8_t *Key,
int *reseed_counter,
int *reseed_time) {
size_t entropy_input_len = min_entropy_input_length;
size_t personalization_string_len = strlen((char *)personalization_string);
size_t seed_material_size = entropy_input_len + sizeof(nonce) + personalization_string_len;
size_t seed_material_size =
entropy_input_len + sizeof(nonce) + personalization_string_len;
uint8_t *seed_material = malloc(seed_material_size);
uint8_t *requested_bits;
time_t timep;
@@ -586,7 +569,8 @@ void ChaCha20_DRBG_Instantiate_algorithm(uint8_t *entropy_input, int nonce, uint
memcpy(seed_material, entropy_input, entropy_input_len);
memcpy(seed_material + entropy_input_len, &nonce, sizeof(nonce));
memcpy(seed_material + entropy_input_len + sizeof(nonce), personalization_string, personalization_string_len);
memcpy(seed_material + entropy_input_len + sizeof(nonce),
personalization_string, personalization_string_len);
array_length = seed_material_size;
requested_bits = ChaCha20_df(V, seed_material, SEEDLEN * 8);
@@ -601,13 +585,17 @@ void ChaCha20_DRBG_Instantiate_algorithm(uint8_t *entropy_input, int nonce, uint
*reseed_time = time(&timep);
}
void ChaCha20_DRBG_Reseed_algorithm(uint8_t *V, uint8_t *Key, int *reseed_counter, int *reseed_time, uint8_t *entropy_input, uint8_t *additional_input)
{
void ChaCha20_DRBG_Reseed_algorithm(uint8_t *V, uint8_t *Key,
int *reseed_counter, int *reseed_time,
uint8_t *entropy_input,
uint8_t *additional_input) {
// 1. seed_material = entropy_input || additional_input.
size_t seed_material_size = min_entropy_input_length + additional_input_length;
size_t seed_material_size =
min_entropy_input_length + additional_input_length;
uint8_t *seed_material = malloc(seed_material_size);
memcpy(seed_material, entropy_input, min_entropy_input_length);
memcpy(seed_material + min_entropy_input_length, additional_input, additional_input_length);
memcpy(seed_material + min_entropy_input_length, additional_input,
additional_input_length);
// 2. seed_material = Block_Cipher_df(seed_material, 256).
uint8_t *requested_bits;
@@ -624,21 +612,20 @@ void ChaCha20_DRBG_Reseed_algorithm(uint8_t *V, uint8_t *Key, int *reseed_counte
*reseed_time = time(&timep);
}
char *ChaCha20_DRBG_Generate_algorithm(uint8_t *V, uint8_t *Key, int *reseed_counter, int requested_number_of_bits, uint8_t *additional_input, uint8_t **returned_bits)
{
if (additional_input != NULL)
{
char *ChaCha20_DRBG_Generate_algorithm(uint8_t *V, uint8_t *Key,
int *reseed_counter,
int requested_number_of_bits,
uint8_t *additional_input,
uint8_t **returned_bits) {
if (additional_input != NULL) {
array_length = additional_input_length;
additional_input = ChaCha20_df(V, additional_input, SEEDLEN * 8);
ChaCha20_DRBG_Update(additional_input, Key, V);
}
else
{
} else {
// Assuming additional_input is a byte array, we set it to 0
additional_input = (uint8_t *)malloc(SEEDLEN);
additional_input_length = SEEDLEN;
if (additional_input == NULL)
{
if (additional_input == NULL) {
return "Memory allocation failed";
}
memset(additional_input, 0, SEEDLEN);
@@ -658,10 +645,9 @@ char *ChaCha20_DRBG_Generate_algorithm(uint8_t *V, uint8_t *Key, int *reseed_cou
return "Success";
}
uint8_t *ChaCha20_df(uint8_t *V, uint8_t *input_string, size_t no_of_bits_to_return)
{
if (no_of_bits_to_return > MAX_NUMBER_OF_BITS)
{
uint8_t *ChaCha20_df(uint8_t *V, uint8_t *input_string,
size_t no_of_bits_to_return) {
if (no_of_bits_to_return > MAX_NUMBER_OF_BITS) {
return NULL;
}
@@ -678,10 +664,10 @@ uint8_t *ChaCha20_df(uint8_t *V, uint8_t *input_string, size_t no_of_bits_to_ret
// Pad S with zeros, if necessary.
int S_actual_size = S_init_size; // Taken the 0x80 into account
while (S_actual_size % OUTLEN != 0)
{
while (S_actual_size % OUTLEN != 0) {
S = realloc(S, S_actual_size + 1); // Increase size by one byte
S[S_actual_size++] = 0x00; // Add a zero at current end, and increase actual size by one
S[S_actual_size++] =
0x00; // Add a zero at current end, and increase actual size by one
}
int temp_len = 0;
@@ -689,18 +675,17 @@ uint8_t *ChaCha20_df(uint8_t *V, uint8_t *input_string, size_t no_of_bits_to_ret
uint32_t i = 0;
uint8_t K[KEYLEN];
uint8_t source[] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
uint8_t source[] = {0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F};
memcpy(K, source, KEYLEN);
ChaCha20_setup(chacha_state, K, chacha_nonce, V);
while (temp_len < KEYLEN + OUTLEN)
{
while (temp_len < KEYLEN + OUTLEN) {
uint8_t IV[OUTLEN] = {0};
IV[OUTLEN - 4] = i; // 32-bit integer representation of i padded with zeros to OUTLEN bits.
IV[OUTLEN - 4] = i; // 32-bit integer representation of i padded with zeros
// to OUTLEN bits.
uint8_t data_to_be_encrypted[OUTLEN + S_actual_size];
memcpy(data_to_be_encrypted, IV, OUTLEN);
@@ -708,11 +693,13 @@ uint8_t *ChaCha20_df(uint8_t *V, uint8_t *input_string, size_t no_of_bits_to_ret
uint8_t data_encrypted_result[OUTLEN + S_actual_size];
ChaCha20_encrypt(chacha_state, data_to_be_encrypted, data_encrypted_result, temp_len, true);
ChaCha20_encrypt(chacha_state, data_to_be_encrypted, data_encrypted_result,
temp_len, true);
temp_len = (i + 1) * (OUTLEN + S_actual_size);
temp = (uint8_t *)realloc(temp, temp_len);
memcpy(temp + i * (OUTLEN + S_actual_size), data_encrypted_result, temp_len);
memcpy(temp + i * (OUTLEN + S_actual_size), data_encrypted_result,
temp_len);
i++;
}
@@ -724,8 +711,7 @@ uint8_t *ChaCha20_df(uint8_t *V, uint8_t *input_string, size_t no_of_bits_to_ret
temp_len = 0;
ChaCha20_setup(chacha_state, K, chacha_nonce, V);
while (temp_len < no_of_bits_to_return / 8)
{
while (temp_len < no_of_bits_to_return / 8) {
ChaCha20_encrypt(chacha_state, X, encrypted_data, OUTLEN, true);
memcpy(X, encrypted_data, OUTLEN);
temp = (uint8_t *)realloc(temp, temp_len + OUTLEN);
@@ -734,8 +720,7 @@ uint8_t *ChaCha20_df(uint8_t *V, uint8_t *input_string, size_t no_of_bits_to_ret
}
uint8_t *requested_bits = (uint8_t *)malloc(no_of_bits_to_return / 8);
if (requested_bits == NULL)
{
if (requested_bits == NULL) {
return NULL;
}
@@ -749,8 +734,7 @@ uint8_t *ChaCha20_df(uint8_t *V, uint8_t *input_string, size_t no_of_bits_to_ret
return requested_bits;
}
int main()
{
int main() {
uint8_t personalization_string[] = "this is personalization_string";
char status[MAX_STATES] = {'\0'};
int state_handle;
@@ -761,7 +745,8 @@ int main()
srand(time(0));
// 初始化DRBG
state_handle = ChaCha20_DRBG_Instantiate_function(personalization_string, status);
state_handle =
ChaCha20_DRBG_Instantiate_function(personalization_string, status);
// 需要生成的比特串长度
printf("Enter the length of the bit string to be generated(bit): ");
@@ -780,30 +765,26 @@ int main()
// 生成的比特串保存在文本文件中
FILE *file = fopen(filename, "w");
if (file == NULL)
{
if (file == NULL) {
printf("无法打开文件\n");
return 1;
}
clock_t start_time = clock();
for (int j = 1; j <= returned_bits_num; ++j)
{
do
{
for (int j = 1; j <= returned_bits_num; ++j) {
do {
int zero_count = 0;
int one_count = 0;
additional_input_length = 0;
ChaCha20_DRBG_Generate_function(state_handle, returned_bits_len, NULL, &returned_bits);
ChaCha20_DRBG_Generate_function(state_handle, returned_bits_len, NULL,
&returned_bits);
for (int i = 0; i < returned_bits_len / 8; i++)
{
for (int i = 0; i < returned_bits_len / 8; i++) {
int bits = returned_bits[i];
for (int j = 0; j < 8; j++)
{
for (int j = 0; j < 8; j++) {
if (bits & 1)
one_count++;
else
@@ -825,8 +806,7 @@ int main()
// 将二进制数据转为十六进制后写入文件
char hex_str[returned_bits_len / 8 * 2 + 1];
for (int i = 0; i < returned_bits_len / 8; ++i)
{
for (int i = 0; i < returned_bits_len / 8; ++i) {
sprintf(&hex_str[i * 2], "%02x", returned_bits[i]);
}
hex_str[returned_bits_len / 8 * 2] = '\0';