Merge pull request 'main' (#13) from sangge/mimajingsai:main into main

Reviewed-on: dqy/mimajingsai#13
This commit is contained in:
dqy 2023-10-19 11:01:40 +08:00
commit a8cd0c1f71
2 changed files with 27 additions and 38 deletions

2
.gitignore vendored
View File

@ -6,3 +6,5 @@ test.py
example.py
ReEncrypt.py
src/temp_message_file
src/temp_key_file

View File

@ -138,7 +138,7 @@ def jacobianMultiply(
# 生成元
U = multiply(g, random.randint(0, sm2p256v1.P))
U = multiply(g, random.randint(0, sm2p256v1.N - 1))
def hash2(double_G: Tuple[point, point]) -> int:
@ -147,7 +147,7 @@ def hash2(double_G: Tuple[point, point]) -> int:
for j in i:
sm3.update(j.to_bytes(32))
digest = sm3.digest()
digest = int.from_bytes(digest, "big") % sm2p256v1.P
digest = int.from_bytes(digest, "big") % sm2p256v1.N
return digest
@ -157,7 +157,7 @@ def hash3(triple_G: Tuple[point, point, point]) -> int:
for j in i:
sm3.update(j.to_bytes(32))
digest = sm3.digest()
digest = int.from_bytes(digest, "big") % sm2p256v1.P
digest = int.from_bytes(digest, "big") % sm2p256v1.N
return digest
@ -168,31 +168,23 @@ def hash4(triple_G: Tuple[point, point, point], Zp: int) -> int:
sm3.update(j.to_bytes(32))
sm3.update(Zp.to_bytes(32))
digest = sm3.digest()
digest = int.from_bytes(digest, "big") % sm2p256v1.P
digest = int.from_bytes(digest, "big") % sm2p256v1.N
return digest
def KDF(G: point) -> int:
sm3 = Sm3() # pylint: disable=e0602
print(G)
for i in G:
sm3.update(i.to_bytes(32))
digest = sm3.digest()
digest = digest
digest = int.from_bytes(digest, "big") % sm2p256v1.P
digest = int.from_bytes(digest, "big") % sm2p256v1.N
mask_128bit = (1 << 128) - 1
digest = digest & mask_128bit
print("key =", digest)
traceback.print_stack()
return digest
def GenerateKeyPair(lamda_parma: int, public_params: tuple) -> Tuple[point, int]:
def GenerateKeyPair() -> Tuple[point, int]:
"""
params:
lamda_param: an init safety param
public_params: curve params
return:
public_key, secret_key
"""
@ -208,10 +200,6 @@ def GenerateKeyPair(lamda_parma: int, public_params: tuple) -> Tuple[point, int]
return public_key, secret_key
# 生成A和B的公钥和私钥
# pk_A, sk_A = GenerateKeyPair(0, ())
# pk_B, sk_B = GenerateKeyPair(0, ())
def Encrypt(pk: point, m: bytes) -> Tuple[capsule, bytes]:
enca = Encapsulate(pk)
@ -235,7 +223,7 @@ def Decapsulate(ska: int, capsule: capsule) -> int:
return K
def Decrypt(sk_A: int, C: Tuple[Tuple[point, point, int], bytes]) -> int:
def Decrypt(sk_A: int, C: Tuple[capsule, bytes]) -> bytes:
"""
params:
sk_A: secret key
@ -256,7 +244,7 @@ def hash5(id: int, D: int) -> int:
sm3.update(id.to_bytes(32))
sm3.update(D.to_bytes(32))
hash = sm3.digest()
hash = int.from_bytes(hash, "big") % G.P
hash = int.from_bytes(hash, "big") % G.N
return hash
@ -266,7 +254,7 @@ def hash6(triple_G: Tuple[point, point, point]) -> int:
for j in i:
sm3.update(j.to_bytes(32))
hash = sm3.digest()
hash = int.from_bytes(hash, "big") % G.P
hash = int.from_bytes(hash, "big") % G.N
return hash
@ -282,7 +270,7 @@ def f(x: int, f_modulus: list, T: int) -> int:
res = 0
for i in range(T):
res += f_modulus[i] * pow(x, i)
res = res % sm2p256v1.P
res = res % sm2p256v1.N
return res
@ -294,28 +282,30 @@ def GenerateReKey(sk_A: int, pk_B: point, N: int, T: int) -> list:
rki(0 <= i <= N-1)
"""
# 计算临时密钥对(x_A, X_A)
x_A = random.randint(0, G.P - 1)
x_A = random.randint(0, sm2p256v1.N - 1)
X_A = multiply(g, x_A)
pk_A = multiply(g, sk_A)
# d是Bob的密钥对与临时密钥对的非交互式Diffie-Hellman密钥交换的结果
d = hash3((X_A, pk_B, multiply(pk_B, x_A)))
# 计算多项式系数, 确定代理节点的ID(一个点)
f_modulus = []
# 计算f0
f0 = (sk_A * inv(d, G.P)) % G.P
#f0 = (sk_A * inv(d, G.P)) % G.P
f0 = (sk_A * inv(d, sm2p256v1.N)) % sm2p256v1.N
f_modulus.append(f0)
# 计算fi(1 <= i <= T - 1)
for i in range(1, T):
f_modulus.append(random.randint(0, G.P - 1))
f_modulus.append(random.randint(0, sm2p256v1.N - 1))
# 计算D
D = hash6((X_A, pk_B, multiply(pk_B, sk_A)))
D = hash6((pk_A, pk_B, multiply(pk_B, sk_A)))
# 计算KF
KF = []
for i in range(N):
y = random.randint(0, G.P - 1)
y = random.randint(0, sm2p256v1.N - 1)
Y = multiply(g, y)
s_x = hash5(i, D) # id需要设置
r_k = f(s_x, f_modulus, T)
@ -327,12 +317,11 @@ def GenerateReKey(sk_A: int, pk_B: point, N: int, T: int) -> list:
def Encapsulate(pk_A: point) -> Tuple[int, capsule]:
r = random.randint(0, G.P - 1)
u = random.randint(0, G.P - 1)
r = random.randint(0, sm2p256v1.N - 1)
u = random.randint(0, sm2p256v1.N - 1)
E = multiply(g, r)
V = multiply(g, u)
s = u + r * hash2((E, V))
s = s % sm2p256v1.P
s = (u + r * hash2((E, V))) % sm2p256v1.N
pk_A_ru = multiply(pk_A, r + u)
K = KDF(pk_A_ru)
capsule = (E, V, s)
@ -359,8 +348,6 @@ def ReEncapsulate(kFrag: list, capsule: capsule) -> Tuple[point, point, int, poi
E, V, s = capsule
if not Checkcapsule(capsule):
raise ValueError("Invalid capsule")
flag = Checkcapsule(capsule)
assert flag == True # 断言,判断胶囊capsule的有效性
E1 = multiply(E, rk)
V1 = multiply(V, rk)
cfrag = E1, V1, id, Xa
@ -419,12 +406,12 @@ def DecapsulateFrags(sk_B: int, pk_B: point, pk_A: point, cFrags: list) -> int:
bis = [] # b ==> λ
bi = 1
for i in range(len(cFrags)):
bi = 1
for j in range(len(cFrags)):
if j != i:
# bi = bi * (Sx[j] // (Sx[j] - Sx[i])) # 暂定整除
Sxj_sub_Sxi = (Sx[j] - Sx[i]) % sm2p256v1.P
Sxj_sub_Sxi_inv = inv(Sxj_sub_Sxi, sm2p256v1.P)
bi = (bi * Sx[j] * Sxj_sub_Sxi_inv) % sm2p256v1.P
Sxj_sub_Sxi = (Sx[j] - Sx[i]) % sm2p256v1.N
Sxj_sub_Sxi_inv = inv(Sxj_sub_Sxi, sm2p256v1.N)
bi = (bi * Sx[j] * Sxj_sub_Sxi_inv) % sm2p256v1.N
bis.append(bi)
E2 = multiply(Elist[0], bis[0]) # E^ 便于计算