from gmssl import * # pylint: disable = e0401 from typing import Tuple, Callable import random import traceback point = Tuple[int, int] capsule = Tuple[point, point, int] # 生成密钥对模块 class CurveFp: def __init__(self, A, B, P, N, Gx, Gy, name): self.A = A self.B = B self.P = P self.N = N self.Gx = Gx self.Gy = Gy self.name = name sm2p256v1 = CurveFp( name="sm2p256v1", A=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC, B=0x28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93, P=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF, N=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123, Gx=0x32C4AE2C1F1981195F9904466A39C9948FE30BBFF2660BE1715A4589334C74C7, Gy=0xBC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0, ) # 椭圆曲线 G = sm2p256v1 # 生成元 g = (sm2p256v1.Gx, sm2p256v1.Gy) def multiply(a: point, n: int) -> point: N = sm2p256v1.N A = sm2p256v1.A P = sm2p256v1.P return fromJacobian(jacobianMultiply(toJacobian(a), n, N, A, P), P) def add(a: point, b: point) -> point: A = sm2p256v1.A P = sm2p256v1.P return fromJacobian(jacobianAdd(toJacobian(a), toJacobian(b), A, P), P) def inv(a: int, n: int) -> int: if a == 0: return 0 lm, hm = 1, 0 low, high = a % n, n while low > 1: r = high // low nm, new = hm - lm * r, high - low * r lm, low, hm, high = nm, new, lm, low return lm % n def toJacobian(Xp_Yp: point) -> Tuple[int, int, int]: Xp, Yp = Xp_Yp return (Xp, Yp, 1) def fromJacobian(Xp_Yp_Zp: Tuple[int, int, int], P: int) -> point: Xp, Yp, Zp = Xp_Yp_Zp z = inv(Zp, P) return ((Xp * z**2) % P, (Yp * z**3) % P) def jacobianDouble( Xp_Yp_Zp: Tuple[int, int, int], A: int, P: int ) -> Tuple[int, int, int]: Xp, Yp, Zp = Xp_Yp_Zp if not Yp: return (0, 0, 0) ysq = (Yp**2) % P S = (4 * Xp * ysq) % P M = (3 * Xp**2 + A * Zp**4) % P nx = (M**2 - 2 * S) % P ny = (M * (S - nx) - 8 * ysq**2) % P nz = (2 * Yp * Zp) % P return (nx, ny, nz) def jacobianAdd( Xp_Yp_Zp: Tuple[int, int, int], Xq_Yq_Zq: Tuple[int, int, int], A: int, P: int ) -> Tuple[int, int, int]: Xp, Yp, Zp = Xp_Yp_Zp Xq, Yq, Zq = Xq_Yq_Zq if not Yp: return (Xq, Yq, Zq) if not Yq: return (Xp, Yp, Zp) U1 = (Xp * Zq**2) % P U2 = (Xq * Zp**2) % P S1 = (Yp * Zq**3) % P S2 = (Yq * Zp**3) % P if U1 == U2: if S1 != S2: return (0, 0, 1) return jacobianDouble((Xp, Yp, Zp), A, P) H = U2 - U1 R = S2 - S1 H2 = (H * H) % P H3 = (H * H2) % P U1H2 = (U1 * H2) % P nx = (R**2 - H3 - 2 * U1H2) % P ny = (R * (U1H2 - nx) - S1 * H3) % P nz = (H * Zp * Zq) % P return (nx, ny, nz) def jacobianMultiply( Xp_Yp_Zp: Tuple[int, int, int], n: int, N: int, A: int, P: int ) -> Tuple[int, int, int]: Xp, Yp, Zp = Xp_Yp_Zp if Yp == 0 or n == 0: return (0, 0, 1) if n == 1: return (Xp, Yp, Zp) if n < 0 or n >= N: return jacobianMultiply((Xp, Yp, Zp), n % N, N, A, P) if (n % 2) == 0: return jacobianDouble(jacobianMultiply((Xp, Yp, Zp), n // 2, N, A, P), A, P) if (n % 2) == 1: return jacobianAdd( jacobianDouble(jacobianMultiply((Xp, Yp, Zp), n // 2, N, A, P), A, P), (Xp, Yp, Zp), A, P, ) raise ValueError("jacobian Multiply error") # 生成元 U = multiply(g, random.randint(0, sm2p256v1.P)) def hash2(double_G: Tuple[point, point]) -> int: sm3 = Sm3() # pylint: disable=e0602 for i in double_G: for j in i: sm3.update(j.to_bytes(32)) digest = sm3.digest() digest = int.from_bytes(digest, "big") % sm2p256v1.P return digest def hash3(triple_G: Tuple[point, point, point]) -> int: sm3 = Sm3() # pylint: disable=e0602 for i in triple_G: for j in i: sm3.update(j.to_bytes(32)) digest = sm3.digest() digest = int.from_bytes(digest, "big") % sm2p256v1.P return digest def hash4(triple_G: Tuple[point, point, point], Zp: int) -> int: sm3 = Sm3() # pylint: disable=e0602 for i in triple_G: for j in i: sm3.update(j.to_bytes(32)) sm3.update(Zp.to_bytes(32)) digest = sm3.digest() digest = int.from_bytes(digest, "big") % sm2p256v1.P return digest def KDF(G: point) -> int: sm3 = Sm3() # pylint: disable=e0602 print(G) for i in G: sm3.update(i.to_bytes(32)) digest = sm3.digest() digest = digest digest = int.from_bytes(digest, "big") % sm2p256v1.P mask_128bit = (1 << 128) - 1 digest = digest & mask_128bit print("key =", digest) traceback.print_stack() return digest def GenerateKeyPair(lamda_parma: int, public_params: tuple) -> Tuple[point, int]: """ params: lamda_param: an init safety param public_params: curve params return: public_key, secret_key """ sm2 = Sm2Key() # pylint: disable=e0602 sm2.generate_key() public_key_x = int.from_bytes(bytes(sm2.public_key.x), "big") public_key_y = int.from_bytes(bytes(sm2.public_key.y), "big") public_key = (public_key_x, public_key_y) secret_key = int.from_bytes(bytes(sm2.private_key), "big") return public_key, secret_key # 生成A和B的公钥和私钥 # pk_A, sk_A = GenerateKeyPair(0, ()) # pk_B, sk_B = GenerateKeyPair(0, ()) def Encrypt(pk: point, m: bytes) -> Tuple[capsule, bytes]: enca = Encapsulate(pk) K = enca[0].to_bytes(16) capsule = enca[1] if len(K) != 16: raise ValueError("invalid key length") iv = b"tpretpretpretpre" sm4_enc = Sm4Cbc(K, iv, DO_ENCRYPT) # pylint: disable=e0602 enc_Data = sm4_enc.update(m) enc_Data += sm4_enc.finish() enc_message = (capsule, enc_Data) return enc_message def Decapsulate(ska: int, capsule: capsule) -> int: E, V, s = capsule EVa = multiply(add(E, V), ska) # (E*V)^ska K = KDF(EVa) return K def Decrypt(sk_A: int, C: Tuple[Tuple[point, point, int], bytes]) -> int: """ params: sk_A: secret key C: (capsule, enc_data) """ capsule, enc_Data = C K = Decapsulate(sk_A, capsule) iv = b"tpretpretpretpre" sm4_dec = Sm4Cbc(K, iv, DO_DECRYPT) # pylint: disable= e0602 dec_Data = sm4_dec.update(enc_Data) dec_Data += sm4_dec.finish() return dec_Data # GenerateRekey def hash5(id: int, D: int) -> int: sm3 = Sm3() # pylint: disable=e0602 sm3.update(id.to_bytes(32)) sm3.update(D.to_bytes(32)) hash = sm3.digest() hash = int.from_bytes(hash, "big") % G.P return hash def hash6(triple_G: Tuple[point, point, point]) -> int: sm3 = Sm3() # pylint: disable=e0602 for i in triple_G: for j in i: sm3.update(j.to_bytes(32)) hash = sm3.digest() hash = int.from_bytes(hash, "big") % G.P return hash def f(x: int, f_modulus: list, T: int) -> int: ''' 功能: 通过多项式插值来实现信息的分散和重构 例如: 随机生成一个多项式f(x)=4x+5,质数P=11,其中f(0)=5,将多项式的系数分别分配给两个人,例如第一个人得到(1, 9),第二个人得到(2, 2).如果两个人都收集到了这两个点,那么可以使用拉格朗日插值法恢复原始的多项式,进而得到秘密信息"5" param: x, f_modulus(多项式系数列表), T(门限) return: res ''' res = 0 for i in range(T): res += f_modulus[i] * pow(x, i) res = res % sm2p256v1.P return res def GenerateReKey(sk_A: int, pk_B: point, N: int, T: int) -> list: """ param: skA, pkB, N(节点总数), T(阈值) return: rki(0 <= i <= N-1) """ # 计算临时密钥对(x_A, X_A) x_A = random.randint(0, G.P - 1) X_A = multiply(g, x_A) # d是Bob的密钥对与临时密钥对的非交互式Diffie-Hellman密钥交换的结果 d = hash3((X_A, pk_B, multiply(pk_B, x_A))) # 计算多项式系数, 确定代理节点的ID(一个点) f_modulus = [] # 计算f0 f0 = (sk_A * inv(d, G.P)) % G.P f_modulus.append(f0) # 计算fi(1 <= i <= T - 1) for i in range(1, T): f_modulus.append(random.randint(0, G.P - 1)) # 计算D D = hash6((X_A, pk_B, multiply(pk_B, sk_A))) # 计算KF KF = [] for i in range(N): y = random.randint(0, G.P - 1) Y = multiply(g, y) s_x = hash5(i, D) # id需要设置 r_k = f(s_x, f_modulus, T) U1 = multiply(U, r_k) kFrag = (i, r_k, X_A, U1) KF.append(kFrag) return KF def Encapsulate(pk_A: point) -> Tuple[int, capsule]: r = random.randint(0, G.P - 1) u = random.randint(0, G.P - 1) E = multiply(g, r) V = multiply(g, u) s = u + r * hash2((E, V)) s = s % sm2p256v1.P pk_A_ru = multiply(pk_A, r + u) K = KDF(pk_A_ru) capsule = (E, V, s) return (K, capsule) def Checkcapsule(capsule: capsule) -> bool: # 验证胶囊的有效性 E, V, s = capsule h2 = hash2((E, V)) g = (sm2p256v1.Gx, sm2p256v1.Gy) result1 = multiply(g, s) temp = multiply(E, h2) # 中间变量 result2 = add(V, temp) # result2=V*E^H2(E,V) if result1 == result2: flag = True else: flag = False return flag def ReEncapsulate(kFrag: list, capsule: capsule) -> Tuple[point, point, int, point]: id, rk, Xa, U1 = kFrag E, V, s = capsule if not Checkcapsule(capsule): raise ValueError("Invalid capsule") flag = Checkcapsule(capsule) assert flag == True # 断言,判断胶囊capsule的有效性 E1 = multiply(E, rk) V1 = multiply(V, rk) cfrag = E1, V1, id, Xa return cfrag # cfrag=(E1,V1,id,Xa) E1= E^rk V1=V^rk # 重加密函数 def ReEncrypt( kFrag: list, C: Tuple[capsule, bytes] ) -> Tuple[Tuple[point, point, int, point], bytes]: capsule, enc_Data = C cFrag = ReEncapsulate(kFrag, capsule) return (cFrag, enc_Data) # 输出密文 # capsule, enc_Data = C # 将加密节点加密后产生的t个(capsule,ct)合并在一起,产生cfrags = {{capsule1,capsule2,...},ct} def mergecfrag(cfrag_cts: list) -> list: ct_list = [] cfrags_list = [] cfrags = [] for cfrag_ct in cfrag_cts: cfrags_list.append(cfrag_ct[0]) ct_list.append(cfrag_ct[1]) cfrags.append(cfrags_list) cfrags.append(ct_list[0]) return cfrags def DecapsulateFrags(sk_B: int, pk_B: point, pk_A: point, cFrags: list) -> int: """ return: K: sm4 key """ Elist = [] Vlist = [] idlist = [] X_Alist = [] for cfrag in cFrags: # Ei,Vi,id,Xa = cFrag Elist.append(cfrag[0]) Vlist.append(cfrag[1]) idlist.append(cfrag[2]) X_Alist.append(cfrag[3]) pkab = multiply(pk_A, sk_B) # pka^b D = hash6((pk_A, pk_B, pkab)) Sx = [] for id in idlist: # 从1到t sxi = hash5(id, D) # id 节点的编号 Sx.append(sxi) bis = [] # b ==> λ bi = 1 for i in range(len(cFrags)): for j in range(len(cFrags)): if j != i: # bi = bi * (Sx[j] // (Sx[j] - Sx[i])) # 暂定整除 Sxj_sub_Sxi = (Sx[j] - Sx[i]) % sm2p256v1.P Sxj_sub_Sxi_inv = inv(Sxj_sub_Sxi, sm2p256v1.P) bi = (bi * Sx[j] * Sxj_sub_Sxi_inv) % sm2p256v1.P bis.append(bi) E2 = multiply(Elist[0], bis[0]) # E^ 便于计算 V2 = multiply(Vlist[0], bis[0]) # V^ for k in range(1, len(cFrags)): Ek = multiply(Elist[k], bis[k]) # EK/Vk 是个列表 Vk = multiply(Vlist[k], bis[k]) E2 = add(Ek, E2) V2 = add(Vk, V2) X_Ab = multiply(X_Alist[0], sk_B) # X_A^b X_A 的值是随机生成的xa,通过椭圆曲线上的倍点运算生成的固定的值 d = hash3((X_Alist[0], pk_B, X_Ab)) EV = add(E2, V2) # E2 + V2 EVd = multiply(EV, d) # (E2 + V2)^d K = KDF(EVd) return K # M = IAEAM(K,enc_Data) # cfrags = {{capsule1,capsule2,...},ct} ,ct->en_Data def DecryptFrags(sk_B: int, pk_B: point, pk_A: point, cfrags: list) -> bytes: capsules, enc_Data = cfrags # 加密后的密文 K = DecapsulateFrags(sk_B, pk_B, pk_A, capsules) K = K.to_bytes(16) iv = b"tpretpretpretpre" sm4_dec = Sm4Cbc(K, iv, DO_DECRYPT) # pylint: disable= e0602 try: dec_Data = sm4_dec.update(enc_Data) dec_Data += sm4_dec.finish() except Exception as e: print(e) print("key error") dec_Data = b"" return dec_Data