465 lines
12 KiB
Python
465 lines
12 KiB
Python
from gmssl import Sm3, Sm2Key, Sm4Cbc, DO_ENCRYPT, DO_DECRYPT
|
||
from typing import Tuple
|
||
import random
|
||
import ecc_rs
|
||
|
||
point = Tuple[int, int]
|
||
capsule = Tuple[point, point, int]
|
||
|
||
|
||
# 生成密钥对模块
|
||
class CurveFp:
|
||
def __init__(self, A, B, P, N, Gx, Gy, name):
|
||
self.A = A
|
||
self.B = B
|
||
self.P = P
|
||
self.N = N
|
||
self.Gx = Gx
|
||
self.Gy = Gy
|
||
self.name = name
|
||
|
||
|
||
sm2p256v1 = CurveFp(
|
||
name="sm2p256v1",
|
||
A=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC,
|
||
B=0x28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93,
|
||
P=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF,
|
||
N=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123,
|
||
Gx=0x32C4AE2C1F1981195F9904466A39C9948FE30BBFF2660BE1715A4589334C74C7,
|
||
Gy=0xBC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0,
|
||
)
|
||
|
||
|
||
# 生成元
|
||
g = (sm2p256v1.Gx, sm2p256v1.Gy)
|
||
|
||
|
||
def multiply(a: point, n: int, flag: int = 0) -> point:
|
||
if flag == 1:
|
||
|
||
result = ecc_rs.multiply(a, n)
|
||
return result
|
||
else:
|
||
N = sm2p256v1.N
|
||
A = sm2p256v1.A
|
||
P = sm2p256v1.P
|
||
return fromJacobian(jacobianMultiply(toJacobian(a), n, N, A, P), P)
|
||
|
||
|
||
def add(a: point, b: point, flag: int = 0) -> point:
|
||
if flag == 1:
|
||
result = ecc_rs.add(a, b)
|
||
return result
|
||
else:
|
||
A = sm2p256v1.A
|
||
P = sm2p256v1.P
|
||
return fromJacobian(jacobianAdd(toJacobian(a), toJacobian(b), A, P), P)
|
||
|
||
|
||
def inv(a: int, n: int) -> int:
|
||
if a == 0:
|
||
return 0
|
||
lm, hm = 1, 0
|
||
low, high = a % n, n
|
||
while low > 1:
|
||
r = high // low
|
||
nm, new = hm - lm * r, high - low * r
|
||
lm, low, hm, high = nm, new, lm, low
|
||
return lm % n
|
||
|
||
|
||
def toJacobian(Xp_Yp: point) -> Tuple[int, int, int]:
|
||
Xp, Yp = Xp_Yp
|
||
return (Xp, Yp, 1)
|
||
|
||
|
||
def fromJacobian(Xp_Yp_Zp: Tuple[int, int, int], P: int) -> point:
|
||
Xp, Yp, Zp = Xp_Yp_Zp
|
||
z = inv(Zp, P)
|
||
return ((Xp * z**2) % P, (Yp * z**3) % P)
|
||
|
||
|
||
def jacobianDouble(
|
||
Xp_Yp_Zp: Tuple[int, int, int], A: int, P: int
|
||
) -> Tuple[int, int, int]:
|
||
Xp, Yp, Zp = Xp_Yp_Zp
|
||
if not Yp:
|
||
return (0, 0, 0)
|
||
ysq = (Yp**2) % P
|
||
S = (4 * Xp * ysq) % P
|
||
M = (3 * Xp**2 + A * Zp**4) % P
|
||
nx = (M**2 - 2 * S) % P
|
||
ny = (M * (S - nx) - 8 * ysq**2) % P
|
||
nz = (2 * Yp * Zp) % P
|
||
return (nx, ny, nz)
|
||
|
||
|
||
def jacobianAdd(
|
||
Xp_Yp_Zp: Tuple[int, int, int], Xq_Yq_Zq: Tuple[int, int, int], A: int, P: int
|
||
) -> Tuple[int, int, int]:
|
||
Xp, Yp, Zp = Xp_Yp_Zp
|
||
Xq, Yq, Zq = Xq_Yq_Zq
|
||
if not Yp:
|
||
return (Xq, Yq, Zq)
|
||
if not Yq:
|
||
return (Xp, Yp, Zp)
|
||
U1 = (Xp * Zq**2) % P
|
||
U2 = (Xq * Zp**2) % P
|
||
S1 = (Yp * Zq**3) % P
|
||
S2 = (Yq * Zp**3) % P
|
||
if U1 == U2:
|
||
if S1 != S2:
|
||
return (0, 0, 1)
|
||
return jacobianDouble((Xp, Yp, Zp), A, P)
|
||
H = U2 - U1
|
||
R = S2 - S1
|
||
H2 = (H * H) % P
|
||
H3 = (H * H2) % P
|
||
U1H2 = (U1 * H2) % P
|
||
nx = (R**2 - H3 - 2 * U1H2) % P
|
||
ny = (R * (U1H2 - nx) - S1 * H3) % P
|
||
nz = (H * Zp * Zq) % P
|
||
return (nx, ny, nz)
|
||
|
||
|
||
def jacobianMultiply(
|
||
Xp_Yp_Zp: Tuple[int, int, int], n: int, N: int, A: int, P: int
|
||
) -> Tuple[int, int, int]:
|
||
Xp, Yp, Zp = Xp_Yp_Zp
|
||
if Yp == 0 or n == 0:
|
||
return (0, 0, 1)
|
||
if n == 1:
|
||
return (Xp, Yp, Zp)
|
||
if n < 0 or n >= N:
|
||
return jacobianMultiply((Xp, Yp, Zp), n % N, N, A, P)
|
||
if (n % 2) == 0:
|
||
return jacobianDouble(jacobianMultiply((Xp, Yp, Zp), n // 2, N, A, P), A, P)
|
||
if (n % 2) == 1:
|
||
return jacobianAdd(
|
||
jacobianDouble(jacobianMultiply((Xp, Yp, Zp), n // 2, N, A, P), A, P),
|
||
(Xp, Yp, Zp),
|
||
A,
|
||
P,
|
||
)
|
||
raise ValueError("jacobian Multiply error")
|
||
|
||
|
||
# 生成元
|
||
U = multiply(g, random.randint(0, sm2p256v1.N - 1))
|
||
|
||
|
||
def hash2(double_G: Tuple[point, point]) -> int:
|
||
sm3 = Sm3() # pylint: disable=e0602
|
||
for i in double_G:
|
||
for j in i:
|
||
sm3.update(j.to_bytes(32))
|
||
digest = sm3.digest()
|
||
digest = int.from_bytes(digest, "big") % sm2p256v1.N
|
||
return digest
|
||
|
||
|
||
def hash3(triple_G: Tuple[point, point, point]) -> int:
|
||
sm3 = Sm3() # pylint: disable=e0602
|
||
for i in triple_G:
|
||
for j in i:
|
||
sm3.update(j.to_bytes(32))
|
||
digest = sm3.digest()
|
||
digest = int.from_bytes(digest, "big") % sm2p256v1.N
|
||
return digest
|
||
|
||
|
||
def hash4(triple_G: Tuple[point, point, point], Zp: int) -> int:
|
||
sm3 = Sm3() # pylint: disable=e0602
|
||
for i in triple_G:
|
||
for j in i:
|
||
sm3.update(j.to_bytes(32))
|
||
sm3.update(Zp.to_bytes(32))
|
||
digest = sm3.digest()
|
||
digest = int.from_bytes(digest, "big") % sm2p256v1.N
|
||
return digest
|
||
|
||
|
||
def KDF(G: point) -> int:
|
||
sm3 = Sm3() # pylint: disable=e0602
|
||
for i in G:
|
||
sm3.update(i.to_bytes(32))
|
||
digest = sm3.digest()
|
||
digest = int.from_bytes(digest, "big") % sm2p256v1.N
|
||
mask_128bit = (1 << 128) - 1
|
||
digest = digest & mask_128bit
|
||
return digest
|
||
|
||
|
||
def GenerateKeyPair() -> Tuple[point, int]:
|
||
"""
|
||
return:
|
||
public_key, secret_key
|
||
"""
|
||
sm2 = Sm2Key() # pylint: disable=e0602
|
||
sm2.generate_key()
|
||
|
||
public_key_x = int.from_bytes(bytes(sm2.public_key.x), "big")
|
||
public_key_y = int.from_bytes(bytes(sm2.public_key.y), "big")
|
||
public_key = (public_key_x, public_key_y)
|
||
|
||
secret_key = int.from_bytes(bytes(sm2.private_key), "big")
|
||
|
||
return public_key, secret_key
|
||
|
||
|
||
def Encrypt(pk: point, m: bytes) -> Tuple[capsule, bytes]:
|
||
enca = Encapsulate(pk)
|
||
K = enca[0].to_bytes(16)
|
||
capsule = enca[1]
|
||
if len(K) != 16:
|
||
raise ValueError("invalid key length")
|
||
iv = b"tpretpretpretpre"
|
||
sm4_enc = Sm4Cbc(K, iv, DO_ENCRYPT) # pylint: disable=e0602
|
||
enc_Data = sm4_enc.update(m)
|
||
enc_Data += sm4_enc.finish()
|
||
enc_message = (capsule, bytes(enc_Data))
|
||
return enc_message
|
||
|
||
|
||
def Decapsulate(ska: int, capsule: capsule) -> int:
|
||
# E, V, s = capsule
|
||
E, V, _ = capsule
|
||
EVa = multiply(add(E, V), ska) # (E*V)^ska
|
||
K = KDF(EVa)
|
||
|
||
return K
|
||
|
||
|
||
def Decrypt(sk_A: int, C: Tuple[capsule, bytes]) -> bytes:
|
||
"""
|
||
params:
|
||
sk_A: secret key
|
||
C: (capsule, enc_data)
|
||
"""
|
||
capsule, enc_Data = C
|
||
K = Decapsulate(sk_A, capsule)
|
||
iv = b"tpretpretpretpre"
|
||
sm4_dec = Sm4Cbc(K, iv, DO_DECRYPT) # pylint: disable= e0602
|
||
dec_Data = sm4_dec.update(enc_Data)
|
||
dec_Data += sm4_dec.finish()
|
||
return bytes(dec_Data)
|
||
|
||
|
||
# GenerateRekey
|
||
def hash5(id: int, D: int) -> int:
|
||
sm3 = Sm3() # pylint: disable=e0602
|
||
sm3.update(id.to_bytes(32))
|
||
sm3.update(D.to_bytes(32))
|
||
hash = sm3.digest()
|
||
hash = int.from_bytes(hash, "big") % sm2p256v1.N
|
||
return hash
|
||
|
||
|
||
def hash6(triple_G: Tuple[point, point, point]) -> int:
|
||
sm3 = Sm3() # pylint: disable=e0602
|
||
for i in triple_G:
|
||
for j in i:
|
||
sm3.update(j.to_bytes(32))
|
||
hash = sm3.digest()
|
||
hash = int.from_bytes(hash, "big") % sm2p256v1.N
|
||
return hash
|
||
|
||
|
||
def f(x: int, f_modulus: list, T: int) -> int:
|
||
"""
|
||
功能: 通过多项式插值来实现信息的分散和重构
|
||
例如: 随机生成一个多项式f(x)=4x+5,质数P=11,其中f(0)=5,将多项式的系数分别分配给两个人,例如第一个人得到(1, 9),第二个人得到(2, 2).如果两个人都收集到了这两个点,那么可以使用拉格朗日插值法恢复原始的多项式,进而得到秘密信息"5"
|
||
param:
|
||
x, f_modulus(多项式系数列表), T(门限)
|
||
return:
|
||
res
|
||
"""
|
||
res = 0
|
||
for i in range(T):
|
||
res += f_modulus[i] * pow(x, i)
|
||
res = res % sm2p256v1.N
|
||
return res
|
||
|
||
|
||
def GenerateReKey(
|
||
sk_A: int, pk_B: point, N: int, T: int, id_tuple: Tuple[int, ...]
|
||
) -> list:
|
||
"""
|
||
param:
|
||
skA, pkB, N(节点总数), T(阈值)
|
||
return:
|
||
rki(0 <= i <= N-1)
|
||
"""
|
||
# 计算临时密钥对(x_A, X_A)
|
||
x_A = random.randint(0, sm2p256v1.N - 1)
|
||
X_A = multiply(g, x_A)
|
||
|
||
pk_A = multiply(g, sk_A)
|
||
|
||
# d是Bob的密钥对与临时密钥对的非交互式Diffie-Hellman密钥交换的结果
|
||
d = hash3((X_A, pk_B, multiply(pk_B, x_A)))
|
||
|
||
# 计算多项式系数
|
||
f_modulus = []
|
||
# 计算f0
|
||
# f0 = (sk_A * inv(d, G.P)) % G.P
|
||
f0 = (sk_A * inv(d, sm2p256v1.N)) % sm2p256v1.N
|
||
f_modulus.append(f0)
|
||
# 计算fi(1 <= i <= T - 1)
|
||
for i in range(1, T):
|
||
f_modulus.append(random.randint(0, sm2p256v1.N - 1))
|
||
|
||
# 计算D
|
||
D = hash6((pk_A, pk_B, multiply(pk_B, sk_A)))
|
||
# 计算KF
|
||
KF = []
|
||
for i in range(N):
|
||
# seems unused?
|
||
# y = random.randint(0, sm2p256v1.N - 1)
|
||
# Y = multiply(g, y)
|
||
s_x = hash5(id_tuple[i], D) # id需要设置
|
||
r_k = f(s_x, f_modulus, T)
|
||
U1 = multiply(U, r_k)
|
||
kFrag = (id_tuple[i], r_k, X_A, U1)
|
||
KF.append(kFrag)
|
||
|
||
return KF
|
||
|
||
|
||
def Encapsulate(pk_A: point) -> Tuple[int, capsule]:
|
||
r = random.randint(0, sm2p256v1.N - 1)
|
||
u = random.randint(0, sm2p256v1.N - 1)
|
||
E = multiply(g, r)
|
||
V = multiply(g, u)
|
||
s = (u + r * hash2((E, V))) % sm2p256v1.N
|
||
pk_A_ru = multiply(pk_A, r + u)
|
||
K = KDF(pk_A_ru)
|
||
capsule = (E, V, s)
|
||
return (K, capsule)
|
||
|
||
|
||
def Checkcapsule(capsule: capsule) -> bool: # 验证胶囊的有效性
|
||
E, V, s = capsule
|
||
h2 = hash2((E, V))
|
||
g = (sm2p256v1.Gx, sm2p256v1.Gy)
|
||
result1 = multiply(g, s)
|
||
temp = multiply(E, h2) # 中间变量
|
||
result2 = add(V, temp) # result2=V*E^H2(E,V)
|
||
if result1 == result2:
|
||
flag = True
|
||
else:
|
||
flag = False
|
||
|
||
return flag
|
||
|
||
|
||
def ReEncapsulate(kFrag: tuple, capsule: capsule) -> Tuple[point, point, int, point]:
|
||
# id, rk, Xa, U1 = kFrag
|
||
id, rk, Xa, _ = kFrag
|
||
# E, V, s = capsule
|
||
E, V, _ = capsule
|
||
if not Checkcapsule(capsule):
|
||
raise ValueError("Invalid capsule")
|
||
E1 = multiply(E, rk)
|
||
V1 = multiply(V, rk)
|
||
cfrag = E1, V1, id, Xa
|
||
return cfrag # cfrag=(E1,V1,id,Xa) E1= E^rk V1=V^rk
|
||
|
||
# 重加密函数
|
||
|
||
|
||
def ReEncrypt(
|
||
kFrag: tuple, C: Tuple[capsule, bytes]
|
||
) -> Tuple[Tuple[point, point, int, point], bytes]:
|
||
capsule, enc_Data = C
|
||
|
||
cFrag = ReEncapsulate(kFrag, capsule)
|
||
return (cFrag, enc_Data) # 输出密文
|
||
|
||
|
||
# capsule, enc_Data = C
|
||
|
||
|
||
# 将加密节点加密后产生的t个(capsule,ct)合并在一起,产生cfrags = {{capsule1,capsule2,...},ct}
|
||
def MergeCFrag(cfrag_cts: list) -> list:
|
||
ct_list = []
|
||
cfrags_list = []
|
||
cfrags = []
|
||
for cfrag_ct in cfrag_cts:
|
||
cfrags_list.append(cfrag_ct[0])
|
||
ct_list.append(cfrag_ct[1])
|
||
cfrags.append(cfrags_list)
|
||
cfrags.append(ct_list[0])
|
||
return cfrags
|
||
|
||
|
||
def DecapsulateFrags(sk_B: int, pk_B: point, pk_A: point, cFrags: list) -> int:
|
||
"""
|
||
return:
|
||
K: sm4 key
|
||
"""
|
||
|
||
Elist = []
|
||
Vlist = []
|
||
idlist = []
|
||
X_Alist = []
|
||
for cfrag in cFrags: # Ei,Vi,id,Xa = cFrag
|
||
Elist.append(cfrag[0])
|
||
Vlist.append(cfrag[1])
|
||
idlist.append(cfrag[2])
|
||
X_Alist.append(cfrag[3])
|
||
|
||
pkab = multiply(pk_A, sk_B) # pka^b
|
||
D = hash6((pk_A, pk_B, pkab))
|
||
Sx = []
|
||
for id in idlist: # 从1到t
|
||
sxi = hash5(id, D) # id 节点的编号
|
||
Sx.append(sxi)
|
||
bis = [] # b ==> λ
|
||
bi = 1
|
||
for i in range(len(cFrags)):
|
||
bi = 1
|
||
for j in range(len(cFrags)):
|
||
if j != i:
|
||
Sxj_sub_Sxi = (Sx[j] - Sx[i]) % sm2p256v1.N
|
||
Sxj_sub_Sxi_inv = inv(Sxj_sub_Sxi, sm2p256v1.N)
|
||
bi = (bi * Sx[j] * Sxj_sub_Sxi_inv) % sm2p256v1.N
|
||
bis.append(bi)
|
||
|
||
E2 = multiply(Elist[0], bis[0]) # E^ 便于计算
|
||
V2 = multiply(Vlist[0], bis[0]) # V^
|
||
for k in range(1, len(cFrags)):
|
||
Ek = multiply(Elist[k], bis[k]) # EK/Vk 是个列表
|
||
Vk = multiply(Vlist[k], bis[k])
|
||
E2 = add(Ek, E2)
|
||
V2 = add(Vk, V2)
|
||
X_Ab = multiply(
|
||
X_Alist[0], sk_B
|
||
) # X_A^b X_A 的值是随机生成的xa,通过椭圆曲线上的倍点运算生成的固定的值
|
||
d = hash3((X_Alist[0], pk_B, X_Ab))
|
||
EV = add(E2, V2) # E2 + V2
|
||
EVd = multiply(EV, d) # (E2 + V2)^d
|
||
K = KDF(EVd)
|
||
|
||
return K
|
||
|
||
|
||
# M = IAEAM(K,enc_Data)
|
||
|
||
|
||
# cfrags = {{capsule1,capsule2,...},ct} ,ct->en_Data
|
||
def DecryptFrags(sk_B: int, pk_B: point, pk_A: point, cfrags: list) -> bytes:
|
||
capsules, enc_Data = cfrags # 加密后的密文
|
||
K = DecapsulateFrags(sk_B, pk_B, pk_A, capsules)
|
||
K = K.to_bytes(16)
|
||
iv = b"tpretpretpretpre"
|
||
sm4_dec = Sm4Cbc(K, iv, DO_DECRYPT) # pylint: disable= e0602
|
||
try:
|
||
dec_Data = sm4_dec.update(enc_Data)
|
||
dec_Data += sm4_dec.finish()
|
||
except Exception as e:
|
||
print(e)
|
||
print("key error")
|
||
dec_Data = b""
|
||
return bytes(dec_Data)
|