453 lines
13 KiB
Python
453 lines
13 KiB
Python
from gmssl import * #pylint: disable = e0401
|
||
from typing import Tuple, Callable
|
||
import random
|
||
|
||
# 生成密钥对模块
|
||
class CurveFp:
|
||
def __init__(self, A, B, P, N, Gx, Gy, name):
|
||
self.A = A
|
||
self.B = B
|
||
self.P = P
|
||
self.N = N
|
||
self.Gx = Gx
|
||
self.Gy = Gy
|
||
self.name = name
|
||
|
||
sm2p256v1 = CurveFp(
|
||
name="sm2p256v1",
|
||
A=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC,
|
||
B=0x28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93,
|
||
P=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF,
|
||
N=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123,
|
||
Gx=0x32C4AE2C1F1981195F9904466A39C9948FE30BBFF2660BE1715A4589334C74C7,
|
||
Gy=0xBC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0
|
||
)
|
||
|
||
def multiply(a: Tuple[int, int], n: int) -> Tuple[int, int]:
|
||
N = sm2p256v1.N
|
||
A = sm2p256v1.A
|
||
P = sm2p256v1.P
|
||
return fromJacobian(jacobianMultiply(toJacobian(a), n, N, A, P), P)
|
||
|
||
def add(a: Tuple[int, int], b: Tuple[int, int]) -> Tuple[int, int]:
|
||
A = sm2p256v1.A
|
||
P = sm2p256v1.P
|
||
return fromJacobian(jacobianAdd(toJacobian(a), toJacobian(b), A, P), P)
|
||
|
||
def inv(a: int, n: int) -> int:
|
||
if a == 0:
|
||
return 0
|
||
lm, hm = 1, 0
|
||
low, high = a % n, n
|
||
while low > 1:
|
||
r = high // low
|
||
nm, new = hm - lm * r, high - low * r
|
||
lm, low, hm, high = nm, new, lm, low
|
||
return lm % n
|
||
|
||
def toJacobian(Xp_Yp: Tuple[int, int]) -> Tuple[int, int, int]:
|
||
Xp, Yp = Xp_Yp
|
||
return (Xp, Yp, 1)
|
||
|
||
def fromJacobian(Xp_Yp_Zp: Tuple[int, int, int], P: int) -> Tuple[int, int]:
|
||
Xp, Yp, Zp = Xp_Yp_Zp
|
||
z = inv(Zp, P)
|
||
return ((Xp * z ** 2) % P, (Yp * z ** 3) % P)
|
||
|
||
def jacobianDouble(Xp_Yp_Zp: Tuple[int, int, int], A: int, P: int) -> Tuple[int, int, int]:
|
||
Xp, Yp, Zp = Xp_Yp_Zp
|
||
if not Yp:
|
||
return (0, 0, 0)
|
||
ysq = (Yp ** 2) % P
|
||
S = (4 * Xp * ysq) % P
|
||
M = (3 * Xp ** 2 + A * Zp ** 4) % P
|
||
nx = (M ** 2 - 2 * S) % P
|
||
ny = (M * (S - nx) - 8 * ysq ** 2) % P
|
||
nz = (2 * Yp * Zp) % P
|
||
return (nx, ny, nz)
|
||
|
||
def jacobianAdd(
|
||
Xp_Yp_Zp: Tuple[int, int, int],
|
||
Xq_Yq_Zq: Tuple[int, int, int],
|
||
A: int,
|
||
P: int
|
||
) -> Tuple[int, int, int]:
|
||
Xp, Yp, Zp = Xp_Yp_Zp
|
||
Xq, Yq, Zq = Xq_Yq_Zq
|
||
if not Yp:
|
||
return (Xq, Yq, Zq)
|
||
if not Yq:
|
||
return (Xp, Yp, Zp)
|
||
U1 = (Xp * Zq ** 2) % P
|
||
U2 = (Xq * Zp ** 2) % P
|
||
S1 = (Yp * Zq ** 3) % P
|
||
S2 = (Yq * Zp ** 3) % P
|
||
if U1 == U2:
|
||
if S1 != S2:
|
||
return (0, 0, 1)
|
||
return jacobianDouble((Xp, Yp, Zp), A, P)
|
||
H = U2 - U1
|
||
R = S2 - S1
|
||
H2 = (H * H) % P
|
||
H3 = (H * H2) % P
|
||
U1H2 = (U1 * H2) % P
|
||
nx = (R ** 2 - H3 - 2 * U1H2) % P
|
||
ny = (R * (U1H2 - nx) - S1 * H3) % P
|
||
nz = (H * Zp * Zq) % P
|
||
return (nx, ny, nz)
|
||
|
||
def jacobianMultiply(
|
||
Xp_Yp_Zp: Tuple[int, int, int],
|
||
n: int,
|
||
N: int,
|
||
A: int,
|
||
P: int
|
||
) -> Tuple[int, int, int]:
|
||
|
||
Xp, Yp, Zp = Xp_Yp_Zp
|
||
if Yp == 0 or n == 0:
|
||
return (0, 0, 1)
|
||
if n == 1:
|
||
return (Xp, Yp, Zp)
|
||
if n < 0 or n >= N:
|
||
return jacobianMultiply((Xp, Yp, Zp), n % N, N, A, P)
|
||
if (n % 2) == 0:
|
||
return jacobianDouble(jacobianMultiply((Xp, Yp, Zp), n // 2, N, A, P), A, P)
|
||
if (n % 2) == 1:
|
||
return jacobianAdd(jacobianDouble(jacobianMultiply((Xp, Yp, Zp), n // 2, N, A, P), A, P), (Xp, Yp, Zp), A, P)
|
||
raise ValueError("jacobian Multiply error")
|
||
|
||
def Setup(sec: int) -> Tuple[CurveFp, Tuple[int, int],
|
||
Tuple[int, int], Callable,
|
||
Callable, Callable, Callable]:
|
||
'''
|
||
params:
|
||
sec: an init safety param
|
||
|
||
return:
|
||
G: sm2 curve
|
||
g: generator
|
||
U: another generator
|
||
use sm3 as hash function
|
||
hash2: G^2 -> Zq
|
||
hash3: G^3 -> Zq
|
||
hash4: G^3 * Zq -> Zq
|
||
'''
|
||
|
||
G = sm2p256v1
|
||
|
||
g = (sm2p256v1.Gx, sm2p256v1.Gy)
|
||
|
||
tmp_u = random.randint(0, sm2p256v1.P)
|
||
U = multiply(g, tmp_u)
|
||
|
||
def hash2(double_G: Tuple[Tuple[int, int], Tuple[int, int]]) -> int:
|
||
sm3 = Sm3() #pylint: disable=e0602
|
||
for i in double_G:
|
||
for j in i:
|
||
sm3.update(j.to_bytes(32))
|
||
digest = sm3.digest()
|
||
digest = int.from_bytes(digest,'big') % sm2p256v1.P
|
||
return digest
|
||
|
||
def hash3(triple_G: Tuple[Tuple[int, int],
|
||
Tuple[int, int],
|
||
Tuple[int, int]]) -> int:
|
||
sm3 = Sm3() #pylint: disable=e0602
|
||
for i in triple_G:
|
||
for j in i:
|
||
sm3.update(j.to_bytes(32))
|
||
digest = sm3.digest()
|
||
digest = int.from_bytes(digest, 'big') % sm2p256v1.P
|
||
return digest
|
||
|
||
def hash4(triple_G: Tuple[Tuple[int, int],
|
||
Tuple[int, int],
|
||
Tuple[int, int]],
|
||
Zp: int) -> int:
|
||
sm3 = Sm3() #pylint: disable=e0602
|
||
for i in triple_G:
|
||
for j in i:
|
||
sm3.update(j.to_bytes(32))
|
||
sm3.update(Zp.to_bytes(32))
|
||
digest = sm3.digest()
|
||
digest = int.from_bytes(digest, 'big') % sm2p256v1.P
|
||
return digest
|
||
|
||
def KDF(G: Tuple[int, int]) -> int:
|
||
sm3 = Sm3() #pylint: disable=e0602
|
||
for i in G:
|
||
sm3.update(i.to_bytes(32))
|
||
digest = sm3.digest(32)
|
||
digest = digest
|
||
digest = int.from_bytes(digest, 'big') % sm2p256v1.P
|
||
return digest
|
||
|
||
|
||
return G, g, U, hash2, hash3, hash4, KDF
|
||
|
||
def GenerateKeyPair(
|
||
lamda_parma: int,
|
||
public_params: tuple
|
||
) -> Tuple[Tuple[int, int], int]:
|
||
'''
|
||
params:
|
||
lamda_param: an init safety param
|
||
public_params: curve params
|
||
|
||
return:
|
||
public_key, secret_key
|
||
'''
|
||
sm2 = Sm2Key() #pylint: disable=e0602
|
||
sm2.generate_key()
|
||
|
||
public_key_x = int.from_bytes(bytes(sm2.public_key.x),"big")
|
||
public_key_y = int.from_bytes(bytes(sm2.public_key.y),"big")
|
||
public_key = (public_key_x, public_key_y)
|
||
|
||
|
||
secret_key = int.from_bytes(bytes(sm2.private_key),"big")
|
||
|
||
return public_key, secret_key
|
||
|
||
def Encrypt(pk: Tuple[int, int], m: int) -> Tuple[Tuple[
|
||
Tuple[int, int],Tuple[int, int], int], int]:
|
||
enca = Encapsulate(pk)
|
||
K = enca[0].to_bytes()
|
||
capsule = enca[1]
|
||
if len(K) != 16:
|
||
raise ValueError("invalid key length")
|
||
iv = b'tpretpretpretpre'
|
||
sm4_enc = Sm4Cbc(K, iv, DO_ENCRYPT) #pylint: disable=e0602
|
||
plain_Data = m.to_bytes(32)
|
||
enc_Data = sm4_enc.update(plain_Data)
|
||
enc_Data += sm4_enc.finish()
|
||
enc_message = (capsule, enc_Data)
|
||
return enc_message
|
||
|
||
def Decapsulate(ska:int,capsule:Tuple[Tuple[int,int],Tuple[int,int],int]) -> int:
|
||
E,V,s = capsule
|
||
EVa=multiply(add(E,V), ska) # (E*V)^ska
|
||
K = KDF(EVa)
|
||
|
||
return K
|
||
|
||
def Decrypt(sk_A: int,C:Tuple[Tuple[
|
||
Tuple[int, int],Tuple[int, int], int], int]) ->int:
|
||
'''
|
||
params:
|
||
sk_A: secret key
|
||
C: (capsule, enc_data)
|
||
'''
|
||
capsule,enc_Data = C
|
||
K = Decapsulate(sk_A,capsule)
|
||
iv = b'tpretpretpretpre'
|
||
sm4_dec = Sm4Cbc(K, iv, DO_DECRYPT) #pylint: disable= e0602
|
||
dec_Data = sm4_dec.update(enc_Data)
|
||
dec_Data += sm4_dec.finish()
|
||
return dec_Data
|
||
|
||
# GenerateRekey
|
||
def H5(id: int, D: int) -> int:
|
||
sm3 = Sm3() #pylint: disable=e0602
|
||
sm3.update(id.to_bytes(32))
|
||
sm3.update(D.to_bytes(32))
|
||
hash = sm3.digest()
|
||
hash = int.from_bytes(hash,'big') % G.P
|
||
return hash
|
||
|
||
def H6(triple_G: Tuple[Tuple[int, int],
|
||
Tuple[int, int],
|
||
Tuple[int, int]]) -> int:
|
||
sm3 = Sm3() #pylint: disable=e0602
|
||
for i in triple_G:
|
||
for j in i:
|
||
sm3.update(j.to_bytes(32))
|
||
hash = sm3.digest()
|
||
hash = int.from_bytes(hash,'big') % G.P
|
||
return hash
|
||
|
||
def f(x: int, f_modulus: list, T: int) -> int:
|
||
res = 0
|
||
for i in range(T):
|
||
res += f_modulus[i] * pow(x, i)
|
||
return res
|
||
|
||
# 生成A和B的公钥和私钥
|
||
pk_A, sk_A = GenerateKeyPair(0, ())
|
||
pk_B, sk_B = GenerateKeyPair(0, ())
|
||
|
||
# sec需要重新设置
|
||
sec = 256
|
||
|
||
# 调用Setup函数
|
||
G, g, U, hash2, hash3, hash4, KDF = Setup(sec)
|
||
|
||
def GenerateReKey(sk_A, pk_B, N: int, T: int) -> list:
|
||
'''
|
||
param:
|
||
skA, pkB, N(节点总数), T(阈值)
|
||
return:
|
||
rki(0 <= i <= N-1)
|
||
'''
|
||
# 计算临时密钥对(x_A, X_A)
|
||
x_A = random.randint(0, G.P - 1)
|
||
X_A = multiply(g, x_A)
|
||
|
||
# d是Bob的密钥对与临时密钥对的非交互式Diffie-Hellman密钥交换的结果
|
||
d = hash3((X_A, pk_B, multiply(pk_B, x_A)))
|
||
|
||
# 计算多项式系数, 确定代理节点的ID(一个点)
|
||
f_modulus = []
|
||
# 计算f0
|
||
f0 = (sk_A * inv(d, G.P)) % G.P
|
||
f_modulus.append(f0)
|
||
# 计算fi(1 <= i <= T - 1)
|
||
for i in range(1, T):
|
||
f_modulus.append(random.randint(0, G.P - 1))
|
||
|
||
# 计算D
|
||
D = H6((X_A, pk_B, multiply(pk_B, sk_A)))
|
||
|
||
# 计算KF
|
||
KF = []
|
||
for i in range(N):
|
||
y = random.randint(0, G.P - 1)
|
||
Y = multiply(g, y)
|
||
s_x = H5(i, D) # id需要设置
|
||
r_k = f(s_x, f_modulus, T)
|
||
U1 = multiply(U, r_k)
|
||
kFrag = (i, r_k, X_A, U1)
|
||
KF.append(kFrag)
|
||
|
||
return KF
|
||
|
||
def Encapsulate(pk_A: Tuple[int, int]) -> Tuple[int, Tuple[Tuple[int, int], Tuple[int, int], int]]:
|
||
r = random.randint(0, G.P - 1)
|
||
u = random.randint(0, G.P - 1)
|
||
E = multiply(g, r)
|
||
V = multiply(g, u)
|
||
s = u + r * hash2((E, V))
|
||
pk_A_ru = multiply(pk_A, r + u)
|
||
K = KDF(pk_A_ru)
|
||
capsule = (E, V, s)
|
||
return (K, capsule)
|
||
|
||
def Checkcapsule(capsule:Tuple[Tuple[int,int],Tuple[int,int],int]) -> bool: # 验证胶囊的有效性
|
||
E,V,s = capsule
|
||
h2 = hash2((E,V))
|
||
g = (sm2p256v1.Gx, sm2p256v1.Gy)
|
||
result1 = multiply(g,s)
|
||
temp = multiply(E,h2) # 中间变量
|
||
result2 =add(V,temp) # result2=V*E^H2(E,V)
|
||
if result1 == result2:
|
||
flag =True
|
||
else:
|
||
flag = False
|
||
|
||
return flag
|
||
|
||
|
||
def ReEncapsulate(kFrag:list,capsule:Tuple[Tuple[int,int],Tuple[int,int],int]) -> Tuple[Tuple[int,int],Tuple[int,int],int,Tuple[int,int]] :
|
||
id,rk,Xa,U1 = kFrag
|
||
E,V,s = capsule
|
||
if not Checkcapsule(capsule):
|
||
raise ValueError('Invalid capsule')
|
||
flag = Checkcapsule(capsule)
|
||
assert flag == True # 断言,判断胶囊capsule的有效性
|
||
E1 = multiply(E,rk)
|
||
V1 = multiply(V,rk)
|
||
cfrag = E1,V1,id,Xa
|
||
return cfrag # cfrag=(E1,V1,id,Xa) E1= E^rk V1=V^rk
|
||
|
||
# 重加密函数
|
||
def ReEncrypt(kFrag:list,
|
||
C:Tuple[Tuple[Tuple[int,int],Tuple[int,int],int],int])->Tuple[Tuple[Tuple[int,int],Tuple[int,int],int,Tuple[int,int]],int] :
|
||
capsule,enc_Data = C
|
||
|
||
cFrag = ReEncapsulate(kFrag,capsule)
|
||
return (cFrag,enc_Data) # 输出密文
|
||
# capsule, enc_Data = C
|
||
|
||
|
||
# N 是加密节点的数量,t是阈值
|
||
def mergecfrag(N:int,t:int)->tuple[Tuple[Tuple[int,int],Tuple[int,int]
|
||
,int,Tuple[int,int]], ...]:
|
||
cfrags = ()
|
||
kfrags = GenerateReKey(sk_A,pk_B,N,t)
|
||
result = Encapsulate(pk_A)
|
||
K,capsule = result
|
||
for kfrag in kfrags:
|
||
cfrag = ReEncapsulate(kfrag,capsule)
|
||
cfrags = cfrags + (cfrag,)
|
||
|
||
return cfrags
|
||
|
||
|
||
|
||
def DecapsulateFrags(sk_B:int,pk_A:Tuple[int,int],cFrags:Tuple[Tuple[Tuple[int,int],Tuple[int,int],int,Tuple[int,int]]]
|
||
,capsule:Tuple[Tuple[int,int],Tuple[int,int],int]) -> int:
|
||
'''
|
||
return:
|
||
K: sm4 key
|
||
'''
|
||
Elist = []
|
||
Vlist = []
|
||
idlist = []
|
||
Xalist = []
|
||
t = 0
|
||
for cfrag in cFrags: # Ei,Vi,id,Xa = cFrag
|
||
Elist.append(cfrag[0])
|
||
Vlist.append(cfrag[1])
|
||
idlist.append(cfrag[2])
|
||
Xalist.append(cfrag[3])
|
||
t = t+1 # 总共有t个片段,t为阈值
|
||
|
||
pkab = multiply(pk_A,sk_B) # pka^b
|
||
D = H6((pk_A,pk_B,pkab))
|
||
Sx = []
|
||
for id in idlist: # 从1到t
|
||
sxi = H5(id,D) # id 节点的编号
|
||
Sx.append(sxi)
|
||
bis= [] # b ==> λ
|
||
j = 1
|
||
i = 1
|
||
bi =1
|
||
for i in range(t):
|
||
for j in range(t):
|
||
if j == i:
|
||
j=j+1
|
||
else:
|
||
bi = bi * (Sx[j]//(Sx[j]-Sx[i])) # 暂定整除
|
||
bis.append(bi)
|
||
|
||
E2=multiply(Elist[0],bis[0]) # E^ 便于计算
|
||
V2=multiply(Vlist[0],bis[0]) # V^
|
||
for k in range(1,t):
|
||
Ek = multiply(Elist[k],bis[k]) # EK/Vk 是个列表
|
||
Vk = multiply(Vlist[k],bis[k])
|
||
E2 = add(Ek,E2)
|
||
V2 = add(Vk,V2)
|
||
Xab = multiply(Xa,b) # Xa^b
|
||
d = hash3((Xa,pk_B,Xab))
|
||
EV = add(E2,V2) # E2 + V2
|
||
EVd = multiply(EV,d) # (E2 + V2)^d
|
||
K = KDF(EVd)
|
||
|
||
return K
|
||
|
||
# M = IAEAM(K,enc_Data)
|
||
|
||
def DecryptFrags(sk_B:int,
|
||
pk_A:Tuple[int,int],
|
||
cFrags:Tuple[Tuple[Tuple[int,int],Tuple[int,int],int,Tuple[int,int]]],
|
||
C:Tuple[Tuple[Tuple[int,int],Tuple[int,int],int],int]
|
||
)->int:
|
||
capsule,enc_Data = C # 加密后的密文
|
||
K = DecapsulateFrags(sk_B,pk_A,cFrags,capsule)
|
||
|
||
iv = b'tpretpretpretpre'
|
||
sm4_dec = Sm4Cbc(K, iv, DO_DECRYPT) #pylint: disable= e0602
|
||
dec_Data = sm4_dec.update(enc_Data)
|
||
dec_Data += sm4_dec.finish()
|
||
return dec_Data |