添加 k-means2

This commit is contained in:
yky 2025-06-10 23:03:35 +08:00
parent fc676b494d
commit 1eaa6c38b0

48
k-means2 Normal file
View File

@ -0,0 +1,48 @@
from copy import deepcopy
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
plt.rcParams['figure.figsize'] = (16,9)
plt.style.use('ggplot')
data = pd.read_csv('xclara.csv')
f1 = data['V1'].values
f2 = data['V2'].values
X = np.array(list(zip(f1, f2)))
# 距离计算函数
def dist(a, b, ax=1):
return np.linalg.norm(a - b, axis=ax)
# 设置聚类数
k = 3
# 随机初始化质心(修正:使用数据范围)
C_x = np.random.randint(0,np.max(X)-20, size=k)
C_y = np.random.randint(0,np.max(X)-20, size=k)
C = np.array(list(zip(C_x, C_y)), dtype=np.float32)
C_old = np.zeros(C.shape)
print(C)
clusters = np.zeros(len(X))
iteration_flag = dist(C,C_old,1)
tmp = 1
while iteration_flag.any() != 0 and tmp<20:
for i in range(len(X)):
distances = dist(X[i],C,1)
clusters[i] = clusters
C_old = deepcopy(C)
for i in range(C):
points = [X[j] for j in range(len(X)) if clusters[j] == i]
C[i] = np.mean(points,axis=0)
print('%d'%tmp)
tmp = tmp + 1
iteraction_flag = dist(C,C_old,1)
print('distance:',iteraction_flag)
colors = ['r','g','b','y','c','m']
fig,ax = plt.subplots()
for i in range(k):
points = np.array([X[j] for j in range(len(X) if clusters[j] == i)])
ax.scatter(points[:,0],points[:,1],s=7,c=colors[i])
ax.scatter(C[:,0],C[:,1],marker="*",s=200,c='black')
plt.show()