import numpy as np import pandas as pd from matplotlib import pyplot as plt from copy import deepcopy # 设置图形样式 plt.rcParams['figure.figsize'] = (16, 9) plt.style.use('ggplot') # 创建示例数据并保存为CSV文件 def create_sample_data(): # 生成三个簇的示例数据 np.random.seed(42) cluster1 = np.random.normal(loc=[0, 0], scale=1, size=(100, 2)) cluster2 = np.random.normal(loc=[10, 5], scale=1.5, size=(100, 2)) cluster3 = np.random.normal(loc=[5, 10], scale=1.2, size=(100, 2)) data = np.vstack([cluster1, cluster2, cluster3]) # 创建DataFrame并保存为CSV df = pd.DataFrame(data, columns=['V1', 'V2']) df.to_csv('xclara.csv', index=False) # 创建示例CSV文件 create_sample_data() # 从CSV读取数据 data = pd.read_csv('xclara.csv') f1 = data['V1'].values f2 = data['V2'].values X = np.array(list(zip(f1, f2))) # 距离计算函数 def dist(a, b, ax=1): return np.linalg.norm(a - b, axis=ax) # 设置聚类数 k = 3 # 随机初始化质心(修正:使用数据范围) C_x = np.random.uniform(np.min(f1), np.max(f1), size=k) C_y = np.random.uniform(np.min(f2), np.max(f2), size=k) C = np.array(list(zip(C_x, C_y)), dtype=np.float32) # 绘制初始数据点和质心(修正颜色拼写错误) plt.scatter(f1, f2, c='black', s=7) # 修正:'balck' -> 'black' plt.scatter(C_x, C_y, marker='*', s=200, c='red') plt.title("Initial Data Points and Centroids") plt.show() # ---- 可选:添加完整的K-Means算法实现 ---- # 复制原始质心用于后续更新 C_old = np.zeros(C.shape) clusters = np.zeros(len(X)) error = dist(C, C_old, None) # K-Means迭代 while error != 0: # 分配点到最近质心 for i in range(len(X)): distances = dist(X[i], C) cluster = np.argmin(distances) clusters[i] = cluster # 保存旧质心 C_old = deepcopy(C) # 计算新质心 for i in range(k): points = [X[j] for j in range(len(X)) if clusters[j] == i] if points: C[i] = np.mean(points, axis=0) # 计算质心移动距离 error = dist(C, C_old, None) # 绘制最终聚类结果 colors = ['r', 'g', 'b', 'c', 'm', 'y'] fig, ax = plt.subplots() for i in range(k): points = np.array([X[j] for j in range(len(X)) if clusters[j] == i]) ax.scatter(points[:, 0], points[:, 1], s=7, c=colors[i]) ax.scatter(C[:, 0], C[:, 1], marker='*', s=200, c='black') plt.title("Final Clustering Result") plt.show()