feat: 添加封装算法Encapsulate,修改Setup函数中的KDF函数,添加全局变量:安全参数sec, A和B的公钥和私钥,G, g, U, hash2, hash3, hash4, KDF

This commit is contained in:
dqy 2023-10-14 21:59:50 +08:00
parent ba5289a33a
commit 9a767a3fa4

View File

@ -23,9 +23,6 @@ sm2p256v1 = CurveFp(
Gy=0xBC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0 Gy=0xBC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0
) )
# sec需要重新设置
sec = 256
def multiply(a: Tuple[int, int], n: int) -> Tuple[int, int]: def multiply(a: Tuple[int, int], n: int) -> Tuple[int, int]:
N = sm2p256v1.N N = sm2p256v1.N
A = sm2p256v1.A A = sm2p256v1.A
@ -178,7 +175,15 @@ def Setup(sec: int) -> Tuple[CurveFp, Tuple[int, int],
digest = int.from_bytes(digest,'big') % sm2p256v1.P digest = int.from_bytes(digest,'big') % sm2p256v1.P
return digest return digest
KDF = Sm3() #pylint: disable=e0602 # KDF = Sm3() #pylint: disable=e0602
def KDF(double_G: Tuple[int, int], num: int) -> int:
sm3 = Sm3()
for i in double_G:
sm3.update(i.to_bytes(32))
sm3.update(num.to_bytes(32))
digest = sm3.digest()
digest = int.from_bytes(digest,'big') % sm2p256v1.P
return digest
return G, g, U, hash2, hash3, hash4, KDF return G, g, U, hash2, hash3, hash4, KDF
@ -206,7 +211,6 @@ def GenerateKeyPair(
return public_key, secret_key return public_key, secret_key
def Enc(pk: Tuple[int, int], m: int) -> Tuple[Tuple[ def Enc(pk: Tuple[int, int], m: int) -> Tuple[Tuple[
Tuple[int, int],Tuple[int, int], int], int]: Tuple[int, int],Tuple[int, int], int], int]:
enca = Encapsulate(pk) enca = Encapsulate(pk)
@ -246,31 +250,39 @@ def f(x: int, f_modulus: list, T: int) -> int:
res += f_modulus[i] * pow(x, i) res += f_modulus[i] * pow(x, i)
return res return res
def GenerateReKey(N: int, T: int) -> list: # 生成A和B的公钥和私钥
pk_A, sk_A = GenerateKeyPair(0, ())
pk_B, sk_B = GenerateKeyPair(0, ())
# sec需要重新设置
sec = 256
# 调用Setup函数
G, g, U, hash2, hash3, hash4, KDF = Setup(sec)
def GenerateReKey(sk_A, pk_B, N: int, T: int) -> list:
''' '''
param: skA, pkB, N(节点总数), T(阈值) param: skA, pkB, N(节点总数), T(阈值)
return rki(0 <= i <= N-1) return rki(0 <= i <= N-1)
''' '''
g_a, a = GenerateKeyPair(0, ())
g_b, b = GenerateKeyPair(0, ())
# 计算临时密钥对(x_A, X_A) # 计算临时密钥对(x_A, X_A)
x_A = random.randint(0, G.P - 1) x_A = random.randint(0, G.P - 1)
X_A = multiply(g, x_A) X_A = multiply(g, x_A)
# d是Bob的密钥对与临时密钥对的非交互式Diffie-Hellman密钥交换的结果 # d是Bob的密钥对与临时密钥对的非交互式Diffie-Hellman密钥交换的结果
d = hash3((X_A, multiply(g, b), multiply(g, b * x_A))) d = hash3((X_A, pk_B, multiply(pk_B, x_A)))
# 计算多项式系数, 确定代理节点的ID(一个点) # 计算多项式系数, 确定代理节点的ID(一个点)
f_modulus = [] f_modulus = []
# 计算f0 # 计算f0
f0 = (a * inv(d, G.P)) % G.P f0 = (sk_A * inv(d, G.P)) % G.P
f_modulus.append(f0) f_modulus.append(f0)
# 计算fi(1 <= i <= T - 1) # 计算fi(1 <= i <= T - 1)
for i in range(1, T): for i in range(1, T):
f_modulus.append(random.randint(0, G.P - 1)) f_modulus.append(random.randint(0, G.P - 1))
# 计算D # 计算D
D = H6((X_A, multiply(g, b), multiply(g, b * a))) D = H6((X_A, pk_B, multiply(pk_B, sk_A)))
# 计算KF # 计算KF
KF = [] KF = []
@ -285,9 +297,12 @@ def GenerateReKey(N: int, T: int) -> list:
return KF return KF
# 测试GenerateReky函数 def Encapsulate(pk_A: Tuple[int, int]) -> Tuple[int, Tuple[Tuple[int, int], Tuple[int, int], int]]:
# G, g, U, hash2, hash3, hash4, KDF = Setup(sec) r = random.randint(0, G.P - 1)
# KF = GenerateReKey(30, 20) u = random.randint(0, G.P - 1)
# for i in KF: E = multiply(g, r)
# for j in i: V = multiply(g, u)
# print(j) s = u + r * hash2((E, V))
K = KDF(pk_A, r + u)
capsule = (E, V, s)
return (K, capsule)