mimajingsai/src/tpre.py

308 lines
8.8 KiB
Python

from gmssl import * #pylint: disable = e0401
from typing import Tuple, Callable
import random
# 生成密钥对模块
class CurveFp:
def __init__(self, A, B, P, N, Gx, Gy, name):
self.A = A
self.B = B
self.P = P
self.N = N
self.Gx = Gx
self.Gy = Gy
self.name = name
sm2p256v1 = CurveFp(
name="sm2p256v1",
A=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC,
B=0x28E9FA9E9D9F5E344D5A9E4BCF6509A7F39789F515AB8F92DDBCBD414D940E93,
P=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF,
N=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123,
Gx=0x32C4AE2C1F1981195F9904466A39C9948FE30BBFF2660BE1715A4589334C74C7,
Gy=0xBC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0
)
def multiply(a: Tuple[int, int], n: int) -> Tuple[int, int]:
N = sm2p256v1.N
A = sm2p256v1.A
P = sm2p256v1.P
return fromJacobian(jacobianMultiply(toJacobian(a), n, N, A, P), P)
def add(a: Tuple[int, int], b: Tuple[int, int]) -> Tuple[int, int]:
A = sm2p256v1.A
P = sm2p256v1.P
return fromJacobian(jacobianAdd(toJacobian(a), toJacobian(b), A, P), P)
def inv(a: int, n: int) -> int:
if a == 0:
return 0
lm, hm = 1, 0
low, high = a % n, n
while low > 1:
r = high // low
nm, new = hm - lm * r, high - low * r
lm, low, hm, high = nm, new, lm, low
return lm % n
def toJacobian(Xp_Yp: Tuple[int, int]) -> Tuple[int, int, int]:
Xp, Yp = Xp_Yp
return (Xp, Yp, 1)
def fromJacobian(Xp_Yp_Zp: Tuple[int, int, int], P: int) -> Tuple[int, int]:
Xp, Yp, Zp = Xp_Yp_Zp
z = inv(Zp, P)
return ((Xp * z ** 2) % P, (Yp * z ** 3) % P)
def jacobianDouble(Xp_Yp_Zp: Tuple[int, int, int], A: int, P: int) -> Tuple[int, int, int]:
Xp, Yp, Zp = Xp_Yp_Zp
if not Yp:
return (0, 0, 0)
ysq = (Yp ** 2) % P
S = (4 * Xp * ysq) % P
M = (3 * Xp ** 2 + A * Zp ** 4) % P
nx = (M ** 2 - 2 * S) % P
ny = (M * (S - nx) - 8 * ysq ** 2) % P
nz = (2 * Yp * Zp) % P
return (nx, ny, nz)
def jacobianAdd(
Xp_Yp_Zp: Tuple[int, int, int],
Xq_Yq_Zq: Tuple[int, int, int],
A: int,
P: int
) -> Tuple[int, int, int]:
Xp, Yp, Zp = Xp_Yp_Zp
Xq, Yq, Zq = Xq_Yq_Zq
if not Yp:
return (Xq, Yq, Zq)
if not Yq:
return (Xp, Yp, Zp)
U1 = (Xp * Zq ** 2) % P
U2 = (Xq * Zp ** 2) % P
S1 = (Yp * Zq ** 3) % P
S2 = (Yq * Zp ** 3) % P
if U1 == U2:
if S1 != S2:
return (0, 0, 1)
return jacobianDouble((Xp, Yp, Zp), A, P)
H = U2 - U1
R = S2 - S1
H2 = (H * H) % P
H3 = (H * H2) % P
U1H2 = (U1 * H2) % P
nx = (R ** 2 - H3 - 2 * U1H2) % P
ny = (R * (U1H2 - nx) - S1 * H3) % P
nz = (H * Zp * Zq) % P
return (nx, ny, nz)
def jacobianMultiply(
Xp_Yp_Zp: Tuple[int, int, int],
n: int,
N: int,
A: int,
P: int
) -> Tuple[int, int, int]:
Xp, Yp, Zp = Xp_Yp_Zp
if Yp == 0 or n == 0:
return (0, 0, 1)
if n == 1:
return (Xp, Yp, Zp)
if n < 0 or n >= N:
return jacobianMultiply((Xp, Yp, Zp), n % N, N, A, P)
if (n % 2) == 0:
return jacobianDouble(jacobianMultiply((Xp, Yp, Zp), n // 2, N, A, P), A, P)
if (n % 2) == 1:
return jacobianAdd(jacobianDouble(jacobianMultiply((Xp, Yp, Zp), n // 2, N, A, P), A, P), (Xp, Yp, Zp), A, P)
raise ValueError("jacobian Multiply error")
def Setup(sec: int) -> Tuple[CurveFp, Tuple[int, int],
Tuple[int, int], Callable,
Callable, Callable, Callable]:
'''
params:
sec: an init safety param
return:
<<<<<<< HEAD
G: sm2 curve
g: generator
U: another generator
use sm3 as hash function
hash2: G^2 -> Zq
hash3: G^3 -> Zq
hash4: G^3 * Zq -> Zq
'''
G = sm2p256v1
g = (sm2p256v1.Gx, sm2p256v1.Gy)
tmp_u = random.randint(0, sm2p256v1.P)
U = multiply(g, tmp_u)
def hash2(double_G: Tuple[Tuple[int, int], Tuple[int, int]]) -> int:
sm3 = Sm3() #pylint: disable=e0602
for i in double_G:
for j in i:
sm3.update(j.to_bytes(32))
digest = sm3.digest()
digest = int.from_bytes(digest,'big') % sm2p256v1.P
return digest
def hash3(triple_G: Tuple[Tuple[int, int],
Tuple[int, int],
Tuple[int, int]]) -> int:
sm3 = Sm3() #pylint: disable=e0602
for i in triple_G:
for j in i:
sm3.update(j.to_bytes(32))
digest = sm3.digest()
digest = int.from_bytes(digest,'big') % sm2p256v1.P
return digest
def hash4(triple_G: Tuple[Tuple[int, int],
Tuple[int, int],
Tuple[int, int]],
Zp: int) -> int:
sm3 = Sm3() #pylint: disable=e0602
for i in triple_G:
for j in i:
sm3.update(j.to_bytes(32))
sm3.update(Zp.to_bytes(32))
digest = sm3.digest()
digest = int.from_bytes(digest,'big') % sm2p256v1.P
return digest
# KDF = Sm3() #pylint: disable=e0602
def KDF(double_G: Tuple[int, int], num: int) -> int:
sm3 = Sm3()
for i in double_G:
sm3.update(i.to_bytes(32))
sm3.update(num.to_bytes(32))
digest = sm3.digest()
digest = int.from_bytes(digest,'big') % sm2p256v1.P
return digest
return G, g, U, hash2, hash3, hash4, KDF
def GenerateKeyPair(
lamda_parma: int,
public_params: tuple
) -> Tuple[Tuple[int, int], int]:
'''
params:
lamda_param: an init safety param
public_params: curve params
return:
public_key, secret_key
'''
sm2 = Sm2Key() #pylint: disable=e0602
sm2.generate_key()
public_key_x = int.from_bytes(bytes(sm2.public_key.x),"big")
public_key_y = int.from_bytes(bytes(sm2.public_key.y),"big")
public_key = (public_key_x, public_key_y)
secret_key = int.from_bytes(bytes(sm2.private_key),"big")
return public_key, secret_key
def Enc(pk: Tuple[int, int], m: int) -> Tuple[Tuple[
Tuple[int, int],Tuple[int, int], int], int]:
enca = Encapsulate(pk)
K = enca[0]
capsule = enca[1]
sm4_enc = Sm4Cbc(key, iv, DO_ENCRYPT) #pylint: disable=e0602
plain_Data = m.to_bytes(32)
enc_Data = sm4_enc.update(plain_Data)
enc_Data += sm4_enc.finish()
enc_message = (capsule, enc_Data)
return enc_message
# GenerateRekey
def H5(id: int, D: int) -> int:
sm3 = Sm3()
sm3.update(id.to_bytes(32))
sm3.update(D.to_bytes(32))
hash = sm3.digest()
hash = int.from_bytes(hash,'big') % G.P
return hash
def H6(triple_G: Tuple[Tuple[int, int],
Tuple[int, int],
Tuple[int, int]]) -> int:
sm3 = Sm3() #pylint: disable=e0602
for i in triple_G:
for j in i:
sm3.update(j.to_bytes(32))
hash = sm3.digest()
hash = int.from_bytes(hash,'big') % G.P
return hash
def f(x: int, f_modulus: list, T: int) -> int:
res = 0
for i in range(T):
res += f_modulus[i] * pow(x, i)
return res
# 生成A和B的公钥和私钥
pk_A, sk_A = GenerateKeyPair(0, ())
pk_B, sk_B = GenerateKeyPair(0, ())
# sec需要重新设置
sec = 256
# 调用Setup函数
G, g, U, hash2, hash3, hash4, KDF = Setup(sec)
def GenerateReKey(sk_A, pk_B, N: int, T: int) -> list:
'''
param: skA, pkB, N(节点总数), T(阈值)
return rki(0 <= i <= N-1)
'''
# 计算临时密钥对(x_A, X_A)
x_A = random.randint(0, G.P - 1)
X_A = multiply(g, x_A)
# d是Bob的密钥对与临时密钥对的非交互式Diffie-Hellman密钥交换的结果
d = hash3((X_A, pk_B, multiply(pk_B, x_A)))
# 计算多项式系数, 确定代理节点的ID(一个点)
f_modulus = []
# 计算f0
f0 = (sk_A * inv(d, G.P)) % G.P
f_modulus.append(f0)
# 计算fi(1 <= i <= T - 1)
for i in range(1, T):
f_modulus.append(random.randint(0, G.P - 1))
# 计算D
D = H6((X_A, pk_B, multiply(pk_B, sk_A)))
# 计算KF
KF = []
for i in range(N):
y = random.randint(0, G.P - 1)
Y = multiply(g, y)
s_x = H5(i, D) # id需要设置
r_k = f(s_x, f_modulus, T)
U1 = multiply(U, r_k)
kFrag = (i, r_k, X_A, U1)
KF.append(kFrag)
return KF
def Encapsulate(pk_A: Tuple[int, int]) -> Tuple[int, Tuple[Tuple[int, int], Tuple[int, int], int]]:
r = random.randint(0, G.P - 1)
u = random.randint(0, G.P - 1)
E = multiply(g, r)
V = multiply(g, u)
s = u + r * hash2((E, V))
K = KDF(pk_A, r + u)
capsule = (E, V, s)
return (K, capsule)