forked from sangge/tpre-python
refactor: refactor: 添加f函数注释;f、Encapsulate增加模P
This commit is contained in:
parent
e4ce861ec7
commit
c8975a104b
1
.gitignore
vendored
1
.gitignore
vendored
@ -6,4 +6,3 @@ test.py
|
||||
example.py
|
||||
|
||||
ReEncrypt.py
|
||||
src/demo.py
|
||||
|
31
src/demo.py
Normal file
31
src/demo.py
Normal file
@ -0,0 +1,31 @@
|
||||
from tpre import *
|
||||
|
||||
# 1
|
||||
pk_a, sk_a = GenerateKeyPair(1, ())
|
||||
m = b'hello world'
|
||||
m = int.from_bytes(m)
|
||||
|
||||
# 2
|
||||
capsule_ct = Encrypt(pk_a, m)
|
||||
|
||||
# 3
|
||||
pk_b, sk_b = GenerateKeyPair(1, ())
|
||||
|
||||
N = 20
|
||||
T = 10
|
||||
|
||||
# 5
|
||||
rekeys = GenerateReKey(sk_a, pk_b, N, T)
|
||||
|
||||
# 7
|
||||
cfrag_cts = []
|
||||
|
||||
for rekey in rekeys:
|
||||
cfrag_ct = ReEncrypt(rekey, capsule_ct)
|
||||
cfrag_cts.append(cfrag_ct)
|
||||
|
||||
# 9
|
||||
cfrags = mergecfrag(cfrag_cts)
|
||||
m = DecryptFrags(sk_b, pk_b, pk_a, cfrags)
|
||||
|
||||
|
448
src/tpre.py
448
src/tpre.py
@ -1,6 +1,11 @@
|
||||
from gmssl import * #pylint: disable = e0401
|
||||
from gmssl import * # pylint: disable = e0401
|
||||
from typing import Tuple, Callable
|
||||
import random
|
||||
import traceback
|
||||
|
||||
point = Tuple[int, int]
|
||||
capsule = Tuple[point, point, int]
|
||||
|
||||
|
||||
# 生成密钥对模块
|
||||
class CurveFp:
|
||||
@ -12,7 +17,8 @@ class CurveFp:
|
||||
self.Gx = Gx
|
||||
self.Gy = Gy
|
||||
self.name = name
|
||||
|
||||
|
||||
|
||||
sm2p256v1 = CurveFp(
|
||||
name="sm2p256v1",
|
||||
A=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFC,
|
||||
@ -20,7 +26,7 @@ sm2p256v1 = CurveFp(
|
||||
P=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF00000000FFFFFFFFFFFFFFFF,
|
||||
N=0xFFFFFFFEFFFFFFFFFFFFFFFFFFFFFFFF7203DF6B21C6052B53BBF40939D54123,
|
||||
Gx=0x32C4AE2C1F1981195F9904466A39C9948FE30BBFF2660BE1715A4589334C74C7,
|
||||
Gy=0xBC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0
|
||||
Gy=0xBC3736A2F4F6779C59BDCEE36B692153D0A9877CC62A474002DF32E52139F0A0,
|
||||
)
|
||||
|
||||
# 椭圆曲线
|
||||
@ -29,17 +35,20 @@ G = sm2p256v1
|
||||
# 生成元
|
||||
g = (sm2p256v1.Gx, sm2p256v1.Gy)
|
||||
|
||||
def multiply(a: Tuple[int, int], n: int) -> Tuple[int, int]:
|
||||
|
||||
def multiply(a: point, n: int) -> point:
|
||||
N = sm2p256v1.N
|
||||
A = sm2p256v1.A
|
||||
P = sm2p256v1.P
|
||||
P = sm2p256v1.P
|
||||
return fromJacobian(jacobianMultiply(toJacobian(a), n, N, A, P), P)
|
||||
|
||||
def add(a: Tuple[int, int], b: Tuple[int, int]) -> Tuple[int, int]:
|
||||
|
||||
def add(a: point, b: point) -> point:
|
||||
A = sm2p256v1.A
|
||||
P = sm2p256v1.P
|
||||
return fromJacobian(jacobianAdd(toJacobian(a), toJacobian(b), A, P), P)
|
||||
|
||||
|
||||
|
||||
def inv(a: int, n: int) -> int:
|
||||
if a == 0:
|
||||
return 0
|
||||
@ -50,33 +59,36 @@ def inv(a: int, n: int) -> int:
|
||||
nm, new = hm - lm * r, high - low * r
|
||||
lm, low, hm, high = nm, new, lm, low
|
||||
return lm % n
|
||||
|
||||
def toJacobian(Xp_Yp: Tuple[int, int]) -> Tuple[int, int, int]:
|
||||
|
||||
|
||||
def toJacobian(Xp_Yp: point) -> Tuple[int, int, int]:
|
||||
Xp, Yp = Xp_Yp
|
||||
return (Xp, Yp, 1)
|
||||
|
||||
def fromJacobian(Xp_Yp_Zp: Tuple[int, int, int], P: int) -> Tuple[int, int]:
|
||||
|
||||
def fromJacobian(Xp_Yp_Zp: Tuple[int, int, int], P: int) -> point:
|
||||
Xp, Yp, Zp = Xp_Yp_Zp
|
||||
z = inv(Zp, P)
|
||||
return ((Xp * z ** 2) % P, (Yp * z ** 3) % P)
|
||||
|
||||
def jacobianDouble(Xp_Yp_Zp: Tuple[int, int, int], A: int, P: int) -> Tuple[int, int, int]:
|
||||
return ((Xp * z**2) % P, (Yp * z**3) % P)
|
||||
|
||||
|
||||
def jacobianDouble(
|
||||
Xp_Yp_Zp: Tuple[int, int, int], A: int, P: int
|
||||
) -> Tuple[int, int, int]:
|
||||
Xp, Yp, Zp = Xp_Yp_Zp
|
||||
if not Yp:
|
||||
return (0, 0, 0)
|
||||
ysq = (Yp ** 2) % P
|
||||
ysq = (Yp**2) % P
|
||||
S = (4 * Xp * ysq) % P
|
||||
M = (3 * Xp ** 2 + A * Zp ** 4) % P
|
||||
nx = (M ** 2 - 2 * S) % P
|
||||
ny = (M * (S - nx) - 8 * ysq ** 2) % P
|
||||
M = (3 * Xp**2 + A * Zp**4) % P
|
||||
nx = (M**2 - 2 * S) % P
|
||||
ny = (M * (S - nx) - 8 * ysq**2) % P
|
||||
nz = (2 * Yp * Zp) % P
|
||||
return (nx, ny, nz)
|
||||
|
||||
|
||||
|
||||
def jacobianAdd(
|
||||
Xp_Yp_Zp: Tuple[int, int, int],
|
||||
Xq_Yq_Zq: Tuple[int, int, int],
|
||||
A: int,
|
||||
P: int
|
||||
Xp_Yp_Zp: Tuple[int, int, int], Xq_Yq_Zq: Tuple[int, int, int], A: int, P: int
|
||||
) -> Tuple[int, int, int]:
|
||||
Xp, Yp, Zp = Xp_Yp_Zp
|
||||
Xq, Yq, Zq = Xq_Yq_Zq
|
||||
@ -84,10 +96,10 @@ def jacobianAdd(
|
||||
return (Xq, Yq, Zq)
|
||||
if not Yq:
|
||||
return (Xp, Yp, Zp)
|
||||
U1 = (Xp * Zq ** 2) % P
|
||||
U2 = (Xq * Zp ** 2) % P
|
||||
S1 = (Yp * Zq ** 3) % P
|
||||
S2 = (Yq * Zp ** 3) % P
|
||||
U1 = (Xp * Zq**2) % P
|
||||
U2 = (Xq * Zp**2) % P
|
||||
S1 = (Yp * Zq**3) % P
|
||||
S2 = (Yq * Zp**3) % P
|
||||
if U1 == U2:
|
||||
if S1 != S2:
|
||||
return (0, 0, 1)
|
||||
@ -97,19 +109,15 @@ def jacobianAdd(
|
||||
H2 = (H * H) % P
|
||||
H3 = (H * H2) % P
|
||||
U1H2 = (U1 * H2) % P
|
||||
nx = (R ** 2 - H3 - 2 * U1H2) % P
|
||||
nx = (R**2 - H3 - 2 * U1H2) % P
|
||||
ny = (R * (U1H2 - nx) - S1 * H3) % P
|
||||
nz = (H * Zp * Zq) % P
|
||||
return (nx, ny, nz)
|
||||
|
||||
def jacobianMultiply(
|
||||
Xp_Yp_Zp: Tuple[int, int, int],
|
||||
n: int,
|
||||
N: int,
|
||||
A: int,
|
||||
P: int
|
||||
) -> Tuple[int, int, int]:
|
||||
|
||||
|
||||
def jacobianMultiply(
|
||||
Xp_Yp_Zp: Tuple[int, int, int], n: int, N: int, A: int, P: int
|
||||
) -> Tuple[int, int, int]:
|
||||
Xp, Yp, Zp = Xp_Yp_Zp
|
||||
if Yp == 0 or n == 0:
|
||||
return (0, 0, 1)
|
||||
@ -120,159 +128,147 @@ def jacobianMultiply(
|
||||
if (n % 2) == 0:
|
||||
return jacobianDouble(jacobianMultiply((Xp, Yp, Zp), n // 2, N, A, P), A, P)
|
||||
if (n % 2) == 1:
|
||||
return jacobianAdd(jacobianDouble(jacobianMultiply((Xp, Yp, Zp), n // 2, N, A, P), A, P), (Xp, Yp, Zp), A, P)
|
||||
return jacobianAdd(
|
||||
jacobianDouble(jacobianMultiply((Xp, Yp, Zp), n // 2, N, A, P), A, P),
|
||||
(Xp, Yp, Zp),
|
||||
A,
|
||||
P,
|
||||
)
|
||||
raise ValueError("jacobian Multiply error")
|
||||
|
||||
# 生成元
|
||||
|
||||
# 生成元
|
||||
U = multiply(g, random.randint(0, sm2p256v1.P))
|
||||
|
||||
# def Setup(sec: int) -> Tuple[CurveFp, Tuple[int, int],
|
||||
# Tuple[int, int]]:
|
||||
# '''
|
||||
# params:
|
||||
# sec: an init safety param
|
||||
|
||||
# return:
|
||||
# G: sm2 curve
|
||||
# g: generator
|
||||
# U: another generator
|
||||
# '''
|
||||
|
||||
# G = sm2p256v1
|
||||
|
||||
# g = (sm2p256v1.Gx, sm2p256v1.Gy)
|
||||
|
||||
# tmp_u = random.randint(0, sm2p256v1.P)
|
||||
# U = multiply(g, tmp_u)
|
||||
|
||||
# return G, g, U
|
||||
|
||||
def hash2(double_G: Tuple[Tuple[int, int], Tuple[int, int]]) -> int:
|
||||
sm3 = Sm3() #pylint: disable=e0602
|
||||
def hash2(double_G: Tuple[point, point]) -> int:
|
||||
sm3 = Sm3() # pylint: disable=e0602
|
||||
for i in double_G:
|
||||
for j in i:
|
||||
sm3.update(j.to_bytes(32))
|
||||
digest = sm3.digest()
|
||||
digest = int.from_bytes(digest,'big') % sm2p256v1.P
|
||||
digest = int.from_bytes(digest, "big") % sm2p256v1.P
|
||||
return digest
|
||||
|
||||
def hash3(triple_G: Tuple[Tuple[int, int],
|
||||
Tuple[int, int],
|
||||
Tuple[int, int]]) -> int:
|
||||
sm3 = Sm3() #pylint: disable=e0602
|
||||
|
||||
def hash3(triple_G: Tuple[point, point, point]) -> int:
|
||||
sm3 = Sm3() # pylint: disable=e0602
|
||||
for i in triple_G:
|
||||
for j in i:
|
||||
sm3.update(j.to_bytes(32))
|
||||
digest = sm3.digest()
|
||||
digest = int.from_bytes(digest, 'big') % sm2p256v1.P
|
||||
digest = int.from_bytes(digest, "big") % sm2p256v1.P
|
||||
return digest
|
||||
|
||||
def hash4(triple_G: Tuple[Tuple[int, int],
|
||||
Tuple[int, int],
|
||||
Tuple[int, int]],
|
||||
Zp: int) -> int:
|
||||
sm3 = Sm3() #pylint: disable=e0602
|
||||
|
||||
def hash4(triple_G: Tuple[point, point, point], Zp: int) -> int:
|
||||
sm3 = Sm3() # pylint: disable=e0602
|
||||
for i in triple_G:
|
||||
for j in i:
|
||||
sm3.update(j.to_bytes(32))
|
||||
sm3.update(Zp.to_bytes(32))
|
||||
digest = sm3.digest()
|
||||
digest = int.from_bytes(digest, 'big') % sm2p256v1.P
|
||||
digest = int.from_bytes(digest, "big") % sm2p256v1.P
|
||||
return digest
|
||||
|
||||
def KDF(G: Tuple[int, int]) -> int:
|
||||
sm3 = Sm3() #pylint: disable=e0602
|
||||
|
||||
def KDF(G: point) -> int:
|
||||
sm3 = Sm3() # pylint: disable=e0602
|
||||
print(G)
|
||||
for i in G:
|
||||
sm3.update(i.to_bytes(32))
|
||||
digest = sm3.digest(32)
|
||||
digest = sm3.digest()
|
||||
digest = digest
|
||||
digest = int.from_bytes(digest, 'big') % sm2p256v1.P
|
||||
digest = int.from_bytes(digest, "big") % sm2p256v1.P
|
||||
mask_128bit = (1 << 128) - 1
|
||||
digest = digest & mask_128bit
|
||||
print("key =", digest)
|
||||
traceback.print_stack()
|
||||
return digest
|
||||
|
||||
def GenerateKeyPair(
|
||||
lamda_parma: int,
|
||||
public_params: tuple
|
||||
) -> Tuple[Tuple[int, int], int]:
|
||||
'''
|
||||
params:
|
||||
lamda_param: an init safety param
|
||||
|
||||
def GenerateKeyPair(lamda_parma: int, public_params: tuple) -> Tuple[point, int]:
|
||||
"""
|
||||
params:
|
||||
lamda_param: an init safety param
|
||||
public_params: curve params
|
||||
|
||||
|
||||
return:
|
||||
public_key, secret_key
|
||||
'''
|
||||
sm2 = Sm2Key() #pylint: disable=e0602
|
||||
"""
|
||||
sm2 = Sm2Key() # pylint: disable=e0602
|
||||
sm2.generate_key()
|
||||
|
||||
public_key_x = int.from_bytes(bytes(sm2.public_key.x),"big")
|
||||
public_key_y = int.from_bytes(bytes(sm2.public_key.y),"big")
|
||||
|
||||
public_key_x = int.from_bytes(bytes(sm2.public_key.x), "big")
|
||||
public_key_y = int.from_bytes(bytes(sm2.public_key.y), "big")
|
||||
public_key = (public_key_x, public_key_y)
|
||||
|
||||
|
||||
secret_key = int.from_bytes(bytes(sm2.private_key),"big")
|
||||
|
||||
|
||||
secret_key = int.from_bytes(bytes(sm2.private_key), "big")
|
||||
|
||||
return public_key, secret_key
|
||||
|
||||
# 生成A和B的公钥和私钥
|
||||
pk_A, sk_A = GenerateKeyPair(0, ())
|
||||
pk_B, sk_B = GenerateKeyPair(0, ())
|
||||
|
||||
def Encrypt(pk: Tuple[int, int], m: int) -> Tuple[Tuple[
|
||||
Tuple[int, int],Tuple[int, int], int], int]:
|
||||
# 生成A和B的公钥和私钥
|
||||
# pk_A, sk_A = GenerateKeyPair(0, ())
|
||||
# pk_B, sk_B = GenerateKeyPair(0, ())
|
||||
|
||||
|
||||
def Encrypt(pk: point, m: bytes) -> Tuple[capsule, bytes]:
|
||||
enca = Encapsulate(pk)
|
||||
K = enca[0].to_bytes()
|
||||
K = enca[0].to_bytes(16)
|
||||
capsule = enca[1]
|
||||
if len(K) != 16:
|
||||
raise ValueError("invalid key length")
|
||||
iv = b'tpretpretpretpre'
|
||||
sm4_enc = Sm4Cbc(K, iv, DO_ENCRYPT) #pylint: disable=e0602
|
||||
plain_Data = m.to_bytes(32)
|
||||
enc_Data = sm4_enc.update(plain_Data)
|
||||
iv = b"tpretpretpretpre"
|
||||
sm4_enc = Sm4Cbc(K, iv, DO_ENCRYPT) # pylint: disable=e0602
|
||||
enc_Data = sm4_enc.update(m)
|
||||
enc_Data += sm4_enc.finish()
|
||||
enc_message = (capsule, enc_Data)
|
||||
return enc_message
|
||||
|
||||
def Decapsulate(ska:int,capsule:Tuple[Tuple[int,int],Tuple[int,int],int]) -> int:
|
||||
E,V,s = capsule
|
||||
EVa=multiply(add(E,V), ska) # (E*V)^ska
|
||||
|
||||
def Decapsulate(ska: int, capsule: capsule) -> int:
|
||||
E, V, s = capsule
|
||||
EVa = multiply(add(E, V), ska) # (E*V)^ska
|
||||
K = KDF(EVa)
|
||||
|
||||
return K
|
||||
|
||||
def Decrypt(sk_A: int,C:Tuple[Tuple[
|
||||
Tuple[int, int],Tuple[int, int], int], int]) ->int:
|
||||
'''
|
||||
|
||||
def Decrypt(sk_A: int, C: Tuple[Tuple[point, point, int], bytes]) -> int:
|
||||
"""
|
||||
params:
|
||||
sk_A: secret key
|
||||
C: (capsule, enc_data)
|
||||
'''
|
||||
capsule,enc_Data = C
|
||||
K = Decapsulate(sk_A,capsule)
|
||||
iv = b'tpretpretpretpre'
|
||||
sm4_dec = Sm4Cbc(K, iv, DO_DECRYPT) #pylint: disable= e0602
|
||||
C: (capsule, enc_data)
|
||||
"""
|
||||
capsule, enc_Data = C
|
||||
K = Decapsulate(sk_A, capsule)
|
||||
iv = b"tpretpretpretpre"
|
||||
sm4_dec = Sm4Cbc(K, iv, DO_DECRYPT) # pylint: disable= e0602
|
||||
dec_Data = sm4_dec.update(enc_Data)
|
||||
dec_Data += sm4_dec.finish()
|
||||
return dec_Data
|
||||
|
||||
|
||||
# GenerateRekey
|
||||
def H5(id: int, D: int) -> int:
|
||||
sm3 = Sm3() #pylint: disable=e0602
|
||||
def hash5(id: int, D: int) -> int:
|
||||
sm3 = Sm3() # pylint: disable=e0602
|
||||
sm3.update(id.to_bytes(32))
|
||||
sm3.update(D.to_bytes(32))
|
||||
hash = sm3.digest()
|
||||
hash = int.from_bytes(hash,'big') % G.P
|
||||
hash = int.from_bytes(hash, "big") % G.P
|
||||
return hash
|
||||
|
||||
|
||||
def hash6(triple_G: Tuple[point, point, point]) -> int:
|
||||
sm3 = Sm3() # pylint: disable=e0602
|
||||
for i in triple_G:
|
||||
for j in i:
|
||||
sm3.update(j.to_bytes(32))
|
||||
hash = sm3.digest()
|
||||
hash = int.from_bytes(hash, "big") % G.P
|
||||
return hash
|
||||
|
||||
def H6(triple_G: Tuple[Tuple[int, int],
|
||||
Tuple[int, int],
|
||||
Tuple[int, int]]) -> int:
|
||||
sm3 = Sm3() #pylint: disable=e0602
|
||||
for i in triple_G:
|
||||
for j in i:
|
||||
sm3.update(j.to_bytes(32))
|
||||
hash = sm3.digest()
|
||||
hash = int.from_bytes(hash,'big') % G.P
|
||||
return hash
|
||||
|
||||
def f(x: int, f_modulus: list, T: int) -> int:
|
||||
'''
|
||||
@ -289,20 +285,21 @@ def f(x: int, f_modulus: list, T: int) -> int:
|
||||
res = res % sm2p256v1.P
|
||||
return res
|
||||
|
||||
def GenerateReKey(sk_A, pk_B, N: int, T: int) -> list:
|
||||
'''
|
||||
param:
|
||||
|
||||
def GenerateReKey(sk_A: int, pk_B: point, N: int, T: int) -> list:
|
||||
"""
|
||||
param:
|
||||
skA, pkB, N(节点总数), T(阈值)
|
||||
return:
|
||||
return:
|
||||
rki(0 <= i <= N-1)
|
||||
'''
|
||||
"""
|
||||
# 计算临时密钥对(x_A, X_A)
|
||||
x_A = random.randint(0, G.P - 1)
|
||||
X_A = multiply(g, x_A)
|
||||
X_A = multiply(g, x_A)
|
||||
|
||||
# d是Bob的密钥对与临时密钥对的非交互式Diffie-Hellman密钥交换的结果
|
||||
d = hash3((X_A, pk_B, multiply(pk_B, x_A)))
|
||||
|
||||
d = hash3((X_A, pk_B, multiply(pk_B, x_A)))
|
||||
|
||||
# 计算多项式系数, 确定代理节点的ID(一个点)
|
||||
f_modulus = []
|
||||
# 计算f0
|
||||
@ -313,22 +310,23 @@ def GenerateReKey(sk_A, pk_B, N: int, T: int) -> list:
|
||||
f_modulus.append(random.randint(0, G.P - 1))
|
||||
|
||||
# 计算D
|
||||
D = H6((X_A, pk_B, multiply(pk_B, sk_A)))
|
||||
D = hash6((X_A, pk_B, multiply(pk_B, sk_A)))
|
||||
|
||||
# 计算KF
|
||||
KF = []
|
||||
for i in range(N):
|
||||
y = random.randint(0, G.P - 1)
|
||||
Y = multiply(g, y)
|
||||
s_x = H5(i, D) # id需要设置
|
||||
s_x = hash5(i, D) # id需要设置
|
||||
r_k = f(s_x, f_modulus, T)
|
||||
U1 = multiply(U, r_k)
|
||||
U1 = multiply(U, r_k)
|
||||
kFrag = (i, r_k, X_A, U1)
|
||||
KF.append(kFrag)
|
||||
|
||||
return KF
|
||||
|
||||
def Encapsulate(pk_A: Tuple[int, int]) -> Tuple[int, Tuple[Tuple[int, int], Tuple[int, int], int]]:
|
||||
|
||||
def Encapsulate(pk_A: point) -> Tuple[int, capsule]:
|
||||
r = random.randint(0, G.P - 1)
|
||||
u = random.randint(0, G.P - 1)
|
||||
E = multiply(g, r)
|
||||
@ -340,120 +338,128 @@ def Encapsulate(pk_A: Tuple[int, int]) -> Tuple[int, Tuple[Tuple[int, int], Tupl
|
||||
capsule = (E, V, s)
|
||||
return (K, capsule)
|
||||
|
||||
def Checkcapsule(capsule:Tuple[Tuple[int,int],Tuple[int,int],int]) -> bool: # 验证胶囊的有效性
|
||||
E,V,s = capsule
|
||||
h2 = hash2((E,V))
|
||||
|
||||
def Checkcapsule(capsule: capsule) -> bool: # 验证胶囊的有效性
|
||||
E, V, s = capsule
|
||||
h2 = hash2((E, V))
|
||||
g = (sm2p256v1.Gx, sm2p256v1.Gy)
|
||||
result1 = multiply(g,s)
|
||||
temp = multiply(E,h2) # 中间变量
|
||||
result2 =add(V,temp) # result2=V*E^H2(E,V)
|
||||
result1 = multiply(g, s)
|
||||
temp = multiply(E, h2) # 中间变量
|
||||
result2 = add(V, temp) # result2=V*E^H2(E,V)
|
||||
if result1 == result2:
|
||||
flag =True
|
||||
flag = True
|
||||
else:
|
||||
flag = False
|
||||
|
||||
return flag
|
||||
|
||||
def ReEncapsulate(kFrag:list,capsule:Tuple[Tuple[int,int],Tuple[int,int],int]) -> Tuple[Tuple[int,int],Tuple[int,int],int,Tuple[int,int]] :
|
||||
id,rk,Xa,U1 = kFrag
|
||||
E,V,s = capsule
|
||||
return flag
|
||||
|
||||
|
||||
def ReEncapsulate(kFrag: list, capsule: capsule) -> Tuple[point, point, int, point]:
|
||||
id, rk, Xa, U1 = kFrag
|
||||
E, V, s = capsule
|
||||
if not Checkcapsule(capsule):
|
||||
raise ValueError('Invalid capsule')
|
||||
raise ValueError("Invalid capsule")
|
||||
flag = Checkcapsule(capsule)
|
||||
assert flag == True # 断言,判断胶囊capsule的有效性
|
||||
E1 = multiply(E,rk)
|
||||
V1 = multiply(V,rk)
|
||||
cfrag = E1,V1,id,Xa
|
||||
return cfrag # cfrag=(E1,V1,id,Xa) E1= E^rk V1=V^rk
|
||||
|
||||
# 重加密函数
|
||||
def ReEncrypt(kFrag:list,
|
||||
C:Tuple[Tuple[Tuple[int,int],Tuple[int,int],int],int])->Tuple[Tuple[Tuple[int,int],Tuple[int,int],int,Tuple[int,int]],int] :
|
||||
capsule,enc_Data = C
|
||||
assert flag == True # 断言,判断胶囊capsule的有效性
|
||||
E1 = multiply(E, rk)
|
||||
V1 = multiply(V, rk)
|
||||
cfrag = E1, V1, id, Xa
|
||||
return cfrag # cfrag=(E1,V1,id,Xa) E1= E^rk V1=V^rk
|
||||
|
||||
# 重加密函数
|
||||
|
||||
|
||||
def ReEncrypt(
|
||||
kFrag: list, C: Tuple[capsule, bytes]
|
||||
) -> Tuple[Tuple[point, point, int, point], bytes]:
|
||||
capsule, enc_Data = C
|
||||
|
||||
cFrag = ReEncapsulate(kFrag, capsule)
|
||||
return (cFrag, enc_Data) # 输出密文
|
||||
|
||||
|
||||
cFrag = ReEncapsulate(kFrag,capsule)
|
||||
return (cFrag,enc_Data) # 输出密文
|
||||
# capsule, enc_Data = C
|
||||
|
||||
|
||||
# N 是加密节点的数量,t是阈值
|
||||
def mergecfrag(N:int,t:int)->tuple[Tuple[Tuple[int,int],Tuple[int,int]
|
||||
,int,Tuple[int,int]], ...]:
|
||||
cfrags = ()
|
||||
kfrags = GenerateReKey(sk_A,pk_B,N,t)
|
||||
result = Encapsulate(pk_A)
|
||||
K,capsule = result
|
||||
for kfrag in kfrags:
|
||||
cfrag = ReEncapsulate(kfrag,capsule)
|
||||
cfrags = cfrags + (cfrag,)
|
||||
|
||||
# 将加密节点加密后产生的t个(capsule,ct)合并在一起,产生cfrags = {{capsule1,capsule2,...},ct}
|
||||
def mergecfrag(cfrag_cts: list) -> list:
|
||||
ct_list = []
|
||||
cfrags_list = []
|
||||
cfrags = []
|
||||
for cfrag_ct in cfrag_cts:
|
||||
cfrags_list.append(cfrag_ct[0])
|
||||
ct_list.append(cfrag_ct[1])
|
||||
cfrags.append(cfrags_list)
|
||||
cfrags.append(ct_list[0])
|
||||
return cfrags
|
||||
|
||||
|
||||
|
||||
def DecapsulateFrags(sk_B:int,pk_A:Tuple[int,int],cFrags:Tuple[Tuple[Tuple[int,int],Tuple[int,int],int,Tuple[int,int]]]
|
||||
,capsule:Tuple[Tuple[int,int],Tuple[int,int],int]) -> int:
|
||||
'''
|
||||
def DecapsulateFrags(sk_B: int, pk_B: point, pk_A: point, cFrags: list) -> int:
|
||||
"""
|
||||
return:
|
||||
K: sm4 key
|
||||
'''
|
||||
"""
|
||||
|
||||
Elist = []
|
||||
Vlist = []
|
||||
idlist = []
|
||||
X_Alist = []
|
||||
t = 0
|
||||
for cfrag in cFrags: # Ei,Vi,id,Xa = cFrag
|
||||
for cfrag in cFrags: # Ei,Vi,id,Xa = cFrag
|
||||
Elist.append(cfrag[0])
|
||||
Vlist.append(cfrag[1])
|
||||
idlist.append(cfrag[2])
|
||||
X_Alist.append(cfrag[3])
|
||||
t = t+1 # 总共有t个片段,t为阈值
|
||||
|
||||
pkab = multiply(pk_A,sk_B) # pka^b
|
||||
D = H6((pk_A,pk_B,pkab))
|
||||
|
||||
pkab = multiply(pk_A, sk_B) # pka^b
|
||||
D = hash6((pk_A, pk_B, pkab))
|
||||
Sx = []
|
||||
for id in idlist: # 从1到t
|
||||
sxi = H5(id,D) # id 节点的编号
|
||||
Sx.append(sxi)
|
||||
bis= [] # b ==> λ
|
||||
for id in idlist: # 从1到t
|
||||
sxi = hash5(id, D) # id 节点的编号
|
||||
Sx.append(sxi)
|
||||
bis = [] # b ==> λ
|
||||
j = 1
|
||||
i = 1
|
||||
bi =1
|
||||
for i in range(t):
|
||||
for j in range(t):
|
||||
if j == i:
|
||||
j=j+1
|
||||
else:
|
||||
bi = bi * (Sx[j]//(Sx[j]-Sx[i])) # 暂定整除
|
||||
bi = 1
|
||||
for i in range(len(cFrags)):
|
||||
for j in range(len(cFrags)):
|
||||
if j != i:
|
||||
# bi = bi * (Sx[j] // (Sx[j] - Sx[i])) # 暂定整除
|
||||
Sxj_sub_Sxi = (Sx[j] - Sx[i]) % sm2p256v1.P
|
||||
Sxj_sub_Sxi_inv = inv(Sxj_sub_Sxi, sm2p256v1.P)
|
||||
bi = (bi * Sx[j] * Sxj_sub_Sxi_inv) % sm2p256v1.P
|
||||
bis.append(bi)
|
||||
|
||||
E2=multiply(Elist[0],bis[0]) # E^ 便于计算
|
||||
V2=multiply(Vlist[0],bis[0]) # V^
|
||||
for k in range(1,t):
|
||||
Ek = multiply(Elist[k],bis[k]) # EK/Vk 是个列表
|
||||
Vk = multiply(Vlist[k],bis[k])
|
||||
E2 = add(Ek,E2)
|
||||
V2 = add(Vk,V2)
|
||||
X_Ab = multiply(Xalist[0],b) # X_A^b X_A 的值是随机生成的xa,通过椭圆曲线上的倍点运算生成的固定的值
|
||||
d = hash3((Xalist[0],pk_B,X_Ab))
|
||||
EV = add(E2,V2) # E2 + V2
|
||||
EVd = multiply(EV,d) # (E2 + V2)^d
|
||||
E2 = multiply(Elist[0], bis[0]) # E^ 便于计算
|
||||
V2 = multiply(Vlist[0], bis[0]) # V^
|
||||
for k in range(1, len(cFrags)):
|
||||
Ek = multiply(Elist[k], bis[k]) # EK/Vk 是个列表
|
||||
Vk = multiply(Vlist[k], bis[k])
|
||||
E2 = add(Ek, E2)
|
||||
V2 = add(Vk, V2)
|
||||
X_Ab = multiply(X_Alist[0], sk_B) # X_A^b X_A 的值是随机生成的xa,通过椭圆曲线上的倍点运算生成的固定的值
|
||||
d = hash3((X_Alist[0], pk_B, X_Ab))
|
||||
EV = add(E2, V2) # E2 + V2
|
||||
EVd = multiply(EV, d) # (E2 + V2)^d
|
||||
K = KDF(EVd)
|
||||
|
||||
return K
|
||||
|
||||
|
||||
# M = IAEAM(K,enc_Data)
|
||||
|
||||
def DecryptFrags(sk_B:int,
|
||||
pk_A:Tuple[int,int],
|
||||
cFrags:Tuple[Tuple[Tuple[int,int],Tuple[int,int],int,Tuple[int,int]]],
|
||||
C:Tuple[Tuple[Tuple[int,int],Tuple[int,int],int],int]
|
||||
)->int:
|
||||
capsule,enc_Data = C # 加密后的密文
|
||||
K = DecapsulateFrags(sk_B,pk_A,cFrags,capsule)
|
||||
|
||||
iv = b'tpretpretpretpre'
|
||||
sm4_dec = Sm4Cbc(K, iv, DO_DECRYPT) #pylint: disable= e0602
|
||||
dec_Data = sm4_dec.update(enc_Data)
|
||||
dec_Data += sm4_dec.finish()
|
||||
return dec_Data
|
||||
|
||||
# cfrags = {{capsule1,capsule2,...},ct} ,ct->en_Data
|
||||
def DecryptFrags(sk_B: int, pk_B: point, pk_A: point, cfrags: list) -> bytes:
|
||||
capsules, enc_Data = cfrags # 加密后的密文
|
||||
K = DecapsulateFrags(sk_B, pk_B, pk_A, capsules)
|
||||
K = K.to_bytes(16)
|
||||
iv = b"tpretpretpretpre"
|
||||
sm4_dec = Sm4Cbc(K, iv, DO_DECRYPT) # pylint: disable= e0602
|
||||
try:
|
||||
dec_Data = sm4_dec.update(enc_Data)
|
||||
dec_Data += sm4_dec.finish()
|
||||
except Exception as e:
|
||||
print(e)
|
||||
print("key error")
|
||||
dec_Data = b""
|
||||
return dec_Data
|
||||
|
Loading…
x
Reference in New Issue
Block a user