hfe_knn/README.md
sangge 4c155d8bf4 Initial Rust project setup with dependencies and dataset
- Add Cargo.toml with TFHE, CSV, and Serde dependencies
- Add .gitignore for Rust target directory
- Include Iris dataset for machine learning experiments
- Add plain KNN implementation binary
- Update LICENSE to MIT and improve README

🤖 Generated with [Claude Code](https://claude.ai/code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-06-29 18:11:40 +08:00

10 lines
363 B
Markdown
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# hfe_knn
全同态加密下的KNN算法实现
knn算法关键是使用一个距离函数来计算样本之间的距离常用的距离函数有欧氏距离、曼哈顿距离等。
计算距离可以在全密文下实现。
主要是寻找一个全同态加密的比较大小方案
全同态加密计划使用TFHE-rs, 交互api使用axum实现的restful api