Merge pull request 'main' (#10) from sangge/mimajingsai:main into main

Reviewed-on: dqy/mimajingsai#10
This commit is contained in:
dqy 2023-10-17 00:25:08 +08:00
commit 1f83cb2140
5 changed files with 247 additions and 65 deletions

1
.gitignore vendored
View File

@ -6,3 +6,4 @@ test.py
example.py
ReEncrypt.py
src/demo.py

View File

@ -6,11 +6,23 @@ This project is designed for the National Cryptography Competition and is implem
The project uses the Chinese national standard cryptography algorithm to implement distributed proxy re-encryption (TPRE).
## Project Structure
.
├── basedockerfile (being used to build base iamge)
├── dockerfile (being used to build application)
├── include (gmssl header)
├── lib (gmssl shared object)
├── LICENSE
├── README_en.md
├── README.md
├── requirements.txt
└── src (application source code)
## Environment Dependencies
System requirements:
- Linux
- Windows
- Windows(may need to complie and install gmssl yourself)
The project relies on the following software:
- Python 3.11
@ -27,11 +39,31 @@ Visit [GmSSL](https://github.com/guanzhi/GmSSL) to learn how to install.
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
```
## Docker Installation
my docker version:
- Version: 24.0.5
- API version: 1.43
- Go version: go1.20.6
### Use base image and build yourself
```bash
docker pull git.mamahaha.work/sangge/tpre:base
docker build . -t your_image_name
docker run your_image_name
```
### Use pre-build image
```bash
docker pull git.mamahaha.work/sangge/tpre:latest
docker run git.mamahaha.work/sangge/tpre:latest
```
## Usage Instructions
## References
[TPRE Algorithm Blog Post](https://www.cnblogs.com/pam-sh/p/17364656.html#tprelib%E7%AE%97%E6%B3%95)
[TPRE Algorithm Blog Post](https://www.cnblogs.com/pam-sh/p/17364656.html#tprelib%E7%AE%97%E6%B3%95)
[Gmssl-python library](https://github.com/GmSSL/GmSSL-Python)

10
dockerfile Normal file
View File

@ -0,0 +1,10 @@
FROM git.mamahaha.work/sangge/tpre:base
COPY src /app
COPY requirements.txt /app/requirements.txt
WORKDIR /app
RUN pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple

View File

@ -118,21 +118,15 @@ def jacobianMultiply(
raise ValueError("jacobian Multiply error")
def Setup(sec: int) -> Tuple[CurveFp, Tuple[int, int],
Tuple[int, int], Callable,
Callable, Callable, Callable]:
Tuple[int, int]]:
'''
params:
sec: an init safety param
return:
<<<<<<< HEAD
G: sm2 curve
g: generator
U: another generator
use sm3 as hash function
hash2: G^2 -> Zq
hash3: G^3 -> Zq
hash4: G^3 * Zq -> Zq
'''
G = sm2p256v1
@ -142,50 +136,49 @@ def Setup(sec: int) -> Tuple[CurveFp, Tuple[int, int],
tmp_u = random.randint(0, sm2p256v1.P)
U = multiply(g, tmp_u)
def hash2(double_G: Tuple[Tuple[int, int], Tuple[int, int]]) -> int:
sm3 = Sm3() #pylint: disable=e0602
for i in double_G:
for j in i:
sm3.update(j.to_bytes(32))
digest = sm3.digest()
digest = int.from_bytes(digest,'big') % sm2p256v1.P
return digest
def hash3(triple_G: Tuple[Tuple[int, int],
Tuple[int, int],
Tuple[int, int]]) -> int:
sm3 = Sm3() #pylint: disable=e0602
for i in triple_G:
for j in i:
sm3.update(j.to_bytes(32))
digest = sm3.digest()
digest = int.from_bytes(digest,'big') % sm2p256v1.P
return digest
def hash4(triple_G: Tuple[Tuple[int, int],
Tuple[int, int],
Tuple[int, int]],
Zp: int) -> int:
sm3 = Sm3() #pylint: disable=e0602
for i in triple_G:
for j in i:
sm3.update(j.to_bytes(32))
sm3.update(Zp.to_bytes(32))
digest = sm3.digest()
digest = int.from_bytes(digest,'big') % sm2p256v1.P
return digest
# KDF = Sm3() #pylint: disable=e0602
def KDF(double_G: Tuple[int, int], num: int) -> int:
sm3 = Sm3()
for i in double_G:
sm3.update(i.to_bytes(32))
sm3.update(num.to_bytes(32))
digest = sm3.digest()
digest = int.from_bytes(digest,'big') % sm2p256v1.P
return digest
return G, g, U, hash2, hash3, hash4, KDF
return G, g, U
def hash2(double_G: Tuple[Tuple[int, int], Tuple[int, int]]) -> int:
sm3 = Sm3() #pylint: disable=e0602
for i in double_G:
for j in i:
sm3.update(j.to_bytes(32))
digest = sm3.digest()
digest = int.from_bytes(digest,'big') % sm2p256v1.P
return digest
def hash3(triple_G: Tuple[Tuple[int, int],
Tuple[int, int],
Tuple[int, int]]) -> int:
sm3 = Sm3() #pylint: disable=e0602
for i in triple_G:
for j in i:
sm3.update(j.to_bytes(32))
digest = sm3.digest()
digest = int.from_bytes(digest, 'big') % sm2p256v1.P
return digest
def hash4(triple_G: Tuple[Tuple[int, int],
Tuple[int, int],
Tuple[int, int]],
Zp: int) -> int:
sm3 = Sm3() #pylint: disable=e0602
for i in triple_G:
for j in i:
sm3.update(j.to_bytes(32))
sm3.update(Zp.to_bytes(32))
digest = sm3.digest()
digest = int.from_bytes(digest, 'big') % sm2p256v1.P
return digest
def KDF(G: Tuple[int, int]) -> int:
sm3 = Sm3() #pylint: disable=e0602
for i in G:
sm3.update(i.to_bytes(32))
digest = sm3.digest(32)
digest = digest
digest = int.from_bytes(digest, 'big') % sm2p256v1.P
return digest
def GenerateKeyPair(
lamda_parma: int,
@ -211,22 +204,46 @@ def GenerateKeyPair(
return public_key, secret_key
def Enc(pk: Tuple[int, int], m: int) -> Tuple[Tuple[
def Encrypt(pk: Tuple[int, int], m: int) -> Tuple[Tuple[
Tuple[int, int],Tuple[int, int], int], int]:
enca = Encapsulate(pk)
K = enca[0]
K = enca[0].to_bytes()
capsule = enca[1]
sm4_enc = Sm4Cbc(key, iv, DO_ENCRYPT) #pylint: disable=e0602
if len(K) != 16:
raise ValueError("invalid key length")
iv = b'tpretpretpretpre'
sm4_enc = Sm4Cbc(K, iv, DO_ENCRYPT) #pylint: disable=e0602
plain_Data = m.to_bytes(32)
enc_Data = sm4_enc.update(plain_Data)
enc_Data += sm4_enc.finish()
enc_message = (capsule, enc_Data)
return enc_message
def Decapsulate(ska:int,capsule:Tuple[Tuple[int,int],Tuple[int,int],int]) -> int:
E,V,s = capsule
EVa=multiply(add(E,V), ska) # (E*V)^ska
K = KDF(EVa)
return K
def Decrypt(sk_A: int,C:Tuple[Tuple[
Tuple[int, int],Tuple[int, int], int], int]) ->int:
'''
params:
sk_A: secret key
C: (capsule, enc_data)
'''
capsule,enc_Data = C
K = Decapsulate(sk_A,capsule)
iv = b'tpretpretpretpre'
sm4_dec = Sm4Cbc(K, iv, DO_DECRYPT) #pylint: disable= e0602
dec_Data = sm4_dec.update(enc_Data)
dec_Data += sm4_dec.finish()
return dec_Data
# GenerateRekey
def H5(id: int, D: int) -> int:
sm3 = Sm3()
sm3 = Sm3() #pylint: disable=e0602
sm3.update(id.to_bytes(32))
sm3.update(D.to_bytes(32))
hash = sm3.digest()
@ -258,12 +275,14 @@ pk_B, sk_B = GenerateKeyPair(0, ())
sec = 256
# 调用Setup函数
G, g, U, hash2, hash3, hash4, KDF = Setup(sec)
G, g, U= Setup(sec)
def GenerateReKey(sk_A, pk_B, N: int, T: int) -> list:
'''
param: skA, pkB, N(节点总数), T(阈值)
return rki(0 <= i <= N-1)
param:
skA, pkB, N(节点总数), T(阈值)
return:
rki(0 <= i <= N-1)
'''
# 计算临时密钥对(x_A, X_A)
x_A = random.randint(0, G.P - 1)
@ -303,6 +322,126 @@ def Encapsulate(pk_A: Tuple[int, int]) -> Tuple[int, Tuple[Tuple[int, int], Tupl
E = multiply(g, r)
V = multiply(g, u)
s = u + r * hash2((E, V))
K = KDF(pk_A, r + u)
pk_A_ru = multiply(pk_A, r + u)
K = KDF(pk_A_ru)
capsule = (E, V, s)
return (K, capsule)
return (K, capsule)
def Checkcapsule(capsule:Tuple[Tuple[int,int],Tuple[int,int],int]) -> bool: # 验证胶囊的有效性
E,V,s = capsule
h2 = hash2((E,V))
g = (sm2p256v1.Gx, sm2p256v1.Gy)
result1 = multiply(g,s)
temp = multiply(E,h2) # 中间变量
result2 =add(V,temp) # result2=V*E^H2(E,V)
if result1 == result2:
flag =True
else:
flag = False
return flag
def ReEncapsulate(kFrag:list,capsule:Tuple[Tuple[int,int],Tuple[int,int],int]) -> Tuple[Tuple[int,int],Tuple[int,int],int,Tuple[int,int]] :
id,rk,Xa,U1 = kFrag
E,V,s = capsule
if not Checkcapsule(capsule):
raise ValueError('Invalid capsule')
flag = Checkcapsule(capsule)
assert flag == True # 断言判断胶囊capsule的有效性
E1 = multiply(E,rk)
V1 = multiply(V,rk)
cfrag = E1,V1,id,Xa
return cfrag # cfrag=(E1,V1,id,Xa) E1= E^rk V1=V^rk
# 重加密函数
def ReEncrypt(kFrag:list,
C:Tuple[Tuple[Tuple[int,int],Tuple[int,int],int],int])->Tuple[Tuple[Tuple[int,int],Tuple[int,int],int,Tuple[int,int]],int] :
capsule,enc_Data = C
cFrag = ReEncapsulate(kFrag,capsule)
return (cFrag,enc_Data) # 输出密文
# capsule, enc_Data = C
# N 是加密节点的数量t是阈值
def mergecfrag(N:int,t:int)->tuple[Tuple[Tuple[int,int],Tuple[int,int]
,int,Tuple[int,int]], ...]:
cfrags = ()
kfrags = GenerateReKey(sk_A,pk_B,N,t)
result = Encapsulate(pk_A)
K,capsule = result
for kfrag in kfrags:
cfrag = ReEncapsulate(kfrag,capsule)
cfrags = cfrags + (cfrag,)
return cfrags
def DecapsulateFrags(sk_B:int,pk_A:Tuple[int,int],cFrags:Tuple[Tuple[Tuple[int,int],Tuple[int,int],int,Tuple[int,int]]]
,capsule:Tuple[Tuple[int,int],Tuple[int,int],int]) -> int:
'''
return:
K: sm4 key
'''
Elist = []
Vlist = []
idlist = []
X_Alist = []
t = 0
for cfrag in cFrags: # Ei,Vi,id,Xa = cFrag
Elist.append(cfrag[0])
Vlist.append(cfrag[1])
idlist.append(cfrag[2])
X_Alist.append(cfrag[3])
t = t+1 # 总共有t个片段t为阈值
pkab = multiply(pk_A,sk_B) # pka^b
D = H6((pk_A,pk_B,pkab))
Sx = []
for id in idlist: # 从1到t
sxi = H5(id,D) # id 节点的编号
Sx.append(sxi)
bis= [] # b ==> λ
j = 1
i = 1
bi =1
for i in range(t):
for j in range(t):
if j == i:
j=j+1
else:
bi = bi * (Sx[j]//(Sx[j]-Sx[i])) # 暂定整除
bis.append(bi)
E2=multiply(Elist[0],bis[0]) # E^ 便于计算
V2=multiply(Vlist[0],bis[0]) # V^
for k in range(1,t):
Ek = multiply(Elist[k],bis[k]) # EK/Vk 是个列表
Vk = multiply(Vlist[k],bis[k])
E2 = add(Ek,E2)
V2 = add(Vk,V2)
X_Ab = multiply(Xalist[0],b) # X_A^b X_A 的值是随机生成的xa通过椭圆曲线上的倍点运算生成的固定的值
d = hash3((Xalist[0],pk_B,X_Ab))
EV = add(E2,V2) # E2 + V2
EVd = multiply(EV,d) # (E2 + V2)^d
K = KDF(EVd)
return K
# M = IAEAM(K,enc_Data)
def DecryptFrags(sk_B:int,
pk_A:Tuple[int,int],
cFrags:Tuple[Tuple[Tuple[int,int],Tuple[int,int],int,Tuple[int,int]]],
C:Tuple[Tuple[Tuple[int,int],Tuple[int,int],int],int]
)->int:
capsule,enc_Data = C # 加密后的密文
K = DecapsulateFrags(sk_B,pk_A,cFrags,capsule)
iv = b'tpretpretpretpre'
sm4_dec = Sm4Cbc(K, iv, DO_DECRYPT) #pylint: disable= e0602
dec_Data = sm4_dec.update(enc_Data)
dec_Data += sm4_dec.finish()
return dec_Data

View File

@ -1,6 +1,6 @@
from gmssl import * #pylint: disable = e0401
sm3 = Sm3() #pylint: disable = e0602
sm3.update(b'1456456')
sm3.update(b'abc')
dgst = sm3.digest()
print("sm3('111') : " + dgst.hex())
print("sm3('abc') : " + dgst.hex())